

Background

Nitrogen dioxide (NO₂) is a brown gas released when fuels are burned. NO₂ inflames the lining of the lungs making it dangerous to those with respiratory illnesses.

In 2021, the WHO revised air quality (AQ) guideline values from an annual mean limit of 40 to 10 µg/m³. A 24 h mean concentration of 25 μ g/m³ was also introduced (Fig. 1). These stricter guidelines highlight the need for novel NO₂ monitoring techniques.

This project aims is to create a **low**cost, portable sensor that is selective and sensitive to NO₂, making AQ monitoring more accessible for all.

Results

Experiment (A)

A model of a remote sensing system based on long-path DOAS methods was set up in-lab according to the schematic in Figure 4. A fibre also collected the light before filtering and sent to a CCD spectrograph as a reference response.

The concentration of NO₂ in the gas cell, calculated by the Beer-Lambert law, was incrementally increased before the cell was flushed (Fig. 5). There is hysteresis in the system (Fig. 6). The correlation between DAS and the reference is highly linear when looking at the addition and removal of NO₂ independently. The signals are well correlated throughout the experiment with $R^2 > 0.989$.

Figure 5.Column density of NO₂ over 1050 cm with standard deviation of 2 x 10¹¹ molecules/cm².

Experiment (B)

A folded path of 800cm was created through a 200cm long atmospheric simulation chamber as shown in Figure 7. The concentration of NO₂ in the chamber was increased and monitored using a CL NO_x analyser (Teledyne T200). The absorbance measured by PD A was then plotted against NO₂ concentration showing $R^2 > 0.842$ (Fig. 8). A decrease in intensity of 1% in PD A corresponds to ~2ppm of NO_2 .

Figure 8. The correlation between PD A and CL NO_x analyser. Data is well correlated here with R²>0.8.

Developing a spectroscopic sensor for accurate, real time monitoring of NO₂

Eibhlín Halpin, Dean Venables

Early work

This system is based on 2-channel differential absorption spectroscopy (DAS). NO₂ has a highly structured absorption spectrum with neighbouring wavelengths of strong and weak absorption. By monitoring the fractional change in intensities of these wavelengths, changes in NO₂ concentrations can be monitored with good spectral selectivity to NO₂. A single narrow bandpass filter (nBPF) can be turned to select these wavelengths (Fig. 2). This method was tested in a proof of principle calibration of the DAS system with a chemiluminescence reference monitor in an atmospheric simulation chamber (Fig. 3). The DAS response (averaged over 60 s) follows the same trends as the chemiluminescence (CL) detector, although the signal is relatively noisy with a **standard deviation** (σ) of **35 ppb (65 μg/m³)** after 8000 s.

length) is folded to give pathlength = 8m. A CL NO_x analyser samples air from the chamber to give a reference NO₂ concentration. Data from the lock-in amplifier and the CL NO_x analyser is recorded to a DAQ and stored on a PC using DAQami software.

Acknowledgements

This work is funded by the Irish Research Council and the Environmental Protection Agency Postgraduate Scholarship.

absorbing operating wavelengths, λ_1 and λ_2 . Figure shows good correlation despite noise in Bandwidth ~ 0.8 nm.

DAS system

differential Our novel absorption spectroscopy (DAS) system is shown in Figure 9. Light returning from the gas sample is split using a beam splitter. One beam is sent directly through the nBPF at two angles corresponding to $\lambda_1 = 439.4$ nm and λ_2 =437.3nm. Light is then collected by photodiode (PD) A and PD B and sent to a lock-in amplifier. Lenses are used to focus the light onto each

photodiode.

Future work

- across a road/car park).
- compact the system.

DAS response.

Figure 9. Differential absorption spectroscopy (DAS) scheme.

• Achieve longer folded path lengths within the atmospheric chamber to improve sensitivity to NO₂.

• Measure real NO_2 concentrations across a long path (e.g.

• Use optical cavities to achieve long path lengths and to

• Currently working with a benchtop signal generator and lock-in amplifier. These components may be replaced by custom circuitry to reduce the cost and size of the system.