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Introduction to Fractional Differentiation

• Real numbers vs integers & fractional vs integer 

order derivative 

• Dates back to Leibniz (1695)

• can describe memory of materials and processes

• Applications in physics, finance, bioengineering, 

continuum mechanics, etc.

Fractional derivative in Caputo sense:
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❖ This study develops the governing equations of unsteady multi-

dimensional incompressible and compressible flow in fractional time 

and multi-fractional space.

❖ When their fractional powers in time and in multi-fractional space are 

specified to unit integer values, the developed fractional equations of 

continuity and momentum for incompressible and compressible fluid 

flow reduce to the classical Navier-Stokes equations. 

❖ As such, these fractional governing equations for fluid flow may be 

interpreted as generalizations of the classical Navier-Stokes equations. 



Continuity Equation
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Continuity Equation for incompressible fluid flow 
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Momentum equations for compressible fluid flow under 
Stokes viscosity law



Conventional form is reached when 𝛼 and 𝛽𝑖 →1 (i = 1, 2, 3)



Momentum equations for incompressible fluid flow under 
Stokes viscosity law

Conventional form is reached when 𝛼 and 𝛽𝑖 →1 (i = 1, 2, 3)



Numerical Application:

The first Stokes Problem (i.e., flow due to a wall suddenly set into motion)

A fluid with constant density and viscosity is bounded by a solid wall (at 𝑥2 =
0), which is set in motion in positive x1 direction at t=0 with a constant 

velocity U0. 
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the initial condition

𝑢1 𝑥2, 𝑡 = 0 = 0;

boundary conditions:

𝑢1 𝑥2 = 0, 𝑡 ≥ 0 = 𝑈0;

𝑢1 𝑥2 = ∞, 𝑡 ≥ 0 = 0.

analytical solution (Bird et al.55)

𝑢1 𝑥2, 𝑡 = 𝑈0. 𝑒𝑟𝑓𝑐(
𝑥2

4𝜈𝑡
)𝑥2

𝑥1U0.



𝜈 = 0.001 Pa.s, T = 5 hours, and 𝑈0=1 m/s.

The fractional form of this problem can be written as
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Velocity profiles when space and time fractional derivative powers are 1.



where transport exponent µ= α/β 

(ratio of time to space fractional powers)

Non-Fickian flow processes (Zaslavsky30)

Sub-diffusive (slow) flow: µ<1 

Normal diffusive flow: µ=1

Super-diffusive (fast) flow: µ>1 



Time fractional derivative, α=1 

β <1 and µ= α/β >1 (super-diffusion) 



Space fractional derivative, β =1

α <1 and µ= α/β <1 (sub-diffusion) 



α = β <1

µ= α/β =1 (normal-diffusion) 



❖ Proposed fractional governing equations for fluid flow are  

generalizations of the classical Navier-Stokes equations. 

❖ The derived governing equations of fluid flow in fractional differentiation 

framework are nonlocal in time and space. Therefore, they can quantify 

the effects of initial and boundary conditions better than the classical 

Navier-Stokes equations. 

❖ Proposed fractional equations of fluid flow have the potential to 

accommodate both the sub-diffusive and the super-diffusive flow 

conditions.

Conclusion
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