Source apportionment of fine aerosol at a rural background site in Central Europe based on seasonal distributions of dicarboxylic acids, sugars and related compounds

Petr Vodička^{1,2}, Kimitaka Kawamura², Dhananjay K. Deshmukh², Petra Pokorná¹, Jaroslav Schwarz¹, Vladimír Ždímal¹

¹ Institute of Chemical Process Fundamentals, Czech Academy of Sciences, Prague, Czech Republic
² Chubu Institute for Advanced Studies, Chubu University, Kasugai 487–8501, Japan

Vienna, Austria & Online | 23–28 April 2023

Site – Košetice Observatory

Central European rural background site Characteristic: agricultural landscape and forests, out of range of major soureces of pollution

location: N: 49° 34' 24.13" E: 14° 4' 49.67" Altitude: 534 m ASL

Sampling

- PM1 aerosol fraction, quartz fiber filters
- Period: 27 Sep 2013 9 Aug 2014 (every 2nd day)
- 146 samples with 24-h time resolution + blanks

Analyses

COOH

COOH

Maleic (cis), M

Methylmalonic, iC₄

HOOC

HOOC

Saccharides:

- anhydrosugars (levoglucosan, mannosan, galactosan)
- sugar alcohols (arabitol, mannitol, erythritol)
- primary sugars (glucose, fructose, mannose, galactose, sucrose)

Total PM₁ mass and Carbon -> EC + OC

Water-soluble ions: SO_4^{2-} , NO_3^{--} , CI^- , oxalate NH_4^+ , $K^+ \rightarrow LWC$ calculation

Meteorology: Wind speed + direction, RH, Temperature, Global radiation

0

autumn

winter

spring

summer

More intense SOA formation and aging in summer

Normal-chain diacids vs.		Autumn			Winter			Spring			Summer		
LWC, T and O_3 correlations (r)		LWC	т	03	LWC	т	O ₃	LWC	т	0 ₃	LWC	т	O ₃
Oxalic	C ₂	0.64	0.22	0.03	0.81	-0.26	0.08	0.65	0.20	0.41	0.53	0.59	0.53
Malonic	C ₃	0.43	0.42	0.20	0.79	-0.23	0.13	0.51	0.26	0.42	0.51	0.56	0.54
Succinic	C ₄	0.59	0.21	-0.01	0.76	-0.28	0.09	0.60	0.10	0.25	0.49	0.54	0.59
Glutaric	C ₅	0.64	0.06	-0.08	0.65	-0.19	0.14	0.62	-0.02	0.22	0.53	0.55	0.65
Adipic	C ₆	0.58	0.10	0.03	0.64	-0.24	0.17	0.54	0.03	0.29	0.44	0.65	0.59
Pimelic	C ₇	0.63	0.05	0.00	0.63	-0.18	0.14	0.41	0.06	0.20	0.24	0.58	0.63
Suberic	C ₈	0.47	0.05	0.07	0.42	-0.14	0.04	0.29	0.26	0.33	0.11	0.82	0.53
Azelaic	C ₉	0.51	-0.20	-0.08	0.38	-0.19	-0.08	0.37	0.04	0.15	0.09	0.63	0.38
Sebacic	C ₁₀	-0.18	-0.21	-0.01	0.48	-0.32	-0.01	0.54	-0.37	0.04	0.11	0.58	0.71
Undecanedioic	C ₁₁	0.28	0.30	0.13	0.46	-0.16	-0.09	0.20	0.32	0.33	0.20	0.70	0.44

- Temp., GR ... rough proxy of seasonal changes

Correlation analyses (r) - O3 ... indicator of the strength of photooxidation

- RH, LWC ... indication of aqueous phase reactions

	Year correlations	Temperature	Global radiation	RH	O ₃	LWC
Malonic	C ₃	0.47	0.55	-0.41	0.49	0.34
Methylmalonic	iC ₄	0.56	0.52	-0.39	0.43	0.17
4-Ketopimelic	kC ₇	0.77	0.79	-0.61	0.69	0.06
7-Oxoheptanoic	ωC ₇	0.59	0.57	-0.46	0.51	0.12
Methylsuccinic	iC ₅	-0.64	-0.48	0.42	-0.43	0.65
Maleic	М	-0.72	-0.59	0.45	-0.50	0.55
Methylmaleic	mM	-0.72	-0.59	0.41	-0.48	0.52
Levoglucosan	LVG	-0.70	-0.54	0.42	-0.48	0.60

7-C acids

- formed probably by oxidation of (n-7) unsaturated fatty acids
- (n-7) fatty acids abundant in *Brassica napus* (Mukherjee & Kiewitt, 1980, Planta)
- markers of biogenic sources?

Hydrolylis of furandiones

°	0 H ₂ O	ноос	,cooh N	Nethylsucc	inic, iC ₅
	0 H ₂ O	ноос	COOH S	Succinic, C ₄	
Year correlations	Temperature	Global radiation	RH	0 ₃	LWC
iC ₅	-0.64	-0.48	0.42	-0.43	0.65
Μ	-0.72	-0.59	0.45	-0.50	0.55
mM	-0.72	-0.59	0.41	-0.48	0.52
LVG	-0.70	-0.54	0.42	-0.48	0.60

Furandiones: products of photooxidation of anthropogenic VOC (Al-Naiema et al. 2017, Atmos. Environ.)

Conclusions

- Clear difference between winter and summer diacids Relative contributions of factors to OM [%] composition in PM₁
- Biogenic, anthropogenic and background factors resolved by PMF analysis
- Methylsuccinic, aromatic and unsaturated aliphatic acids as typical anthropogenic tracers
- Organic acids with seven and three carbons determined as biogenic tracers
- Two mechanisms of SOA formation - preferred aqueous-phase in winter, while gaseousphase in summer.

Atmospheric Environment 299 (2023) 119619

Anthropogenic and biogenic tracers in fine aerosol based on seasonal distributions of dicarboxylic acids, sugars and related compounds at a rural background site in Central Europe

Petr Vodička^{a, b, *}, Kimitaka Kawamura^{b, **}, Dhananjay K. Deshmukh^{b, 1}, Petra Pokorná^a, Jaroslav Schwarz^a, Vladimír Ždímal^a

^a Institute of Chemical Process Fundamentals, Czech Academy of Sciences, Rozvojová 1/135, 165 00, Prague 6, Czech Republic ^b Chubu Institute for Advanced Studies, Chubu University, 1200 Matsumoto-cho, Kasugal, 487–8501, Japan

Acknowledgement:

- the Czech Science Foundation grant No. 20–08304J
- project "ACTRIS-CZ RI" (No. CZ.02.1.01/0.0/0.0/16_013/0001315)
- the Japan Society for the Promotion of Science (JSPS) through Grant-in-Aid No. 24221001

Email: vodicka@icpf.cas.cz

Thank you for your attention!

CZECH REPUBLIC