

Estimating the impact of the radiative feedback from atmospheric methane on climate sensitivity

- perturbations? Which role does the interactive chemistry play?
- change simulations?

Laura Stecher, Franziska Winterstein, Martin Dameris, Patrick Jöckel, and Michael Ponater

Deutsches Zentrum für Luft- und Raumfahrt – Institut für Physik der Atmosphäre, Oberpfaffenhofen (Germany)

heric CH ₄ Il sink	4		•					
ack of ^{Tation}	2	0.951	1.923 51	0.045				ΔR ^{centere}
Radiative pertu	-1 -2 -3				-0.004	-0.007	-0.041	-0.006
ieme	-4	RF _{inst}	H ₂ O trop.	H ₂ O strat.	O ₃ trop	o. O₃ strat.	CH4 trop.	CH4 strat.
Pincus EMAC.		V	/interstein et al., 2019 (EMAC- CHAM5) [Wm⁻²]		EMAC- PSrad [Wm ⁻²]	Myhre 19 [Wr	e et al. 98 n ⁻²]	Etminan et 2016 [Wm ⁻²]
² ¬ ₄ beller.	2x	CH ₄	0.23		0.56	0.8	0.53	
aration.	5x	кCH ₄	0.51		1.68	1.	55	-
rences	& /	Ackn	owlee	dgm	ents	•		
jing climate: A modeling o) with the Modular Ear ations in atmospheric m ce, and night marine air ical origin of climate se	g study, F th Submo nodels, Jo tempera nsitivity a	PhD thesis, Luc odel System (N ournal of Adva ture since the and efficacy dif	dwig-Maximilians- MESSy) version 2. nces in Modeling late nineteenth ce ferences?. Clim D	Universität Mü 51, Geosci. M Earth Systems Intury, J. Geop Dyn 49, 2831–2 Chem Phys	inchen, lodel s, 5, 225– ohys. 2844,	This study ha framework of ClimS (g The model performed Computing support from a	as been co the DFG rant no. W simulation at the Gen Centre (D the Bunde	onducted in th project IRFAI /I 5369/1-1) ns have been man Climate KRZ) through sministerium

http://www.dlr.de/ipa 18.04.2023