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Introduction

The Zagros Simply Folded belt (Z5FB) figures among the most seismically active fold and thrust belts in the world. In the
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Coseismic slip modeling

/' To obtain the source parameters, we inverted the unwrapped geometry ol

with uniform sip in an elastic half-space (Okada, 1985).
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Postseismic deformation o :
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To examine the postseismic displacement, we processed |« ..
Sentinel 1A images by NSBAS chain (Doin et L., 2011) =
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Coseismic InSAR displacement

¥ We used the GMTSAR software (Sandwell et al 2016) to generate interferograms from the S1-TOPS C-band SAR imagery
in ascending (A101) and descending (D35) geometries.
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¥ The observed significant uplift and
minor subsidence demonstrate a
major reverse kinematic for the
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+ Regarding the location of the mainshock, the concentration of the
aftershocks, and the related coseismic InSAR displacements on the
Rortheast side of the ZFF surface trace, we could suggest the Zagros
foredeep fault as the causative source of the Ganaveh mainshock.

¥ Based on (1) the location of the USGS and Benz (2021) epicenters at 6 km
distance from the surface trace of the ZFF, (2) the depth of ~6 km for the
maximum slip obtained from InSAR data, and (3) supposing a flat fault
geometry, a ~45 dip fault plane is achieved. This is not compatible with
our InSAR modeling that indicates a ~23° dip for the causative fault plane
reaching the ground surface several kilometers to the southwest of the ZFF
surface trace. However, by assuminy zeometry for the
Causativ faul plane s surfsce trac il bocompatible with he 5%
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We constructed the listric fault geometry for the Ganaveh
fault plane using avalable geological documents;

¥ upward and downward limitation to the depth of =2 -
2.5 and 10 km_as the minimum depth for the base of
the Gachsaran formation and the Hormos formation.

¥ Our InsAR modeling presents a 23° dip angle for the

earthquake is released seismically by aftershocks piingtiiotn Rigan
postseismic deformation. However, the postseismic deformations for the rest of

¥ 52%and 43% of the events have 3 relaxation time of less than one year and
between one to 10 years, respectively. Only 5% of the earthquakes were
followed by long-term postseismic deformation.

v The geodetic postseismic to coselsmic moment release ratio (Mp/Me) for the >
‘Ganaveh earthquake is 18% and it lies within the empirically defined pattern of .
Mc = 10Mp of the postseismic deformation.

' The coseismic interferogram time coverage and/or the locked asperities around
the coseismic slip may explain the lower ratio of the Mp/Mc of the Ganaveh PRI
mainshock. Figure 8 Mo/ ato o the esrthquakes occured in an and

roundthe wort bsedonthe rlesse ime.

Conclusion

¥ The Ganaveh earthquake occurred in the southeastern part of the Dezful embayment, where the modern deformation is absorbed
by both thick- and thin-skin deformation along the major faults.
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NW of the coseismic rupture asperity document the northwest propagation of the earthquake rupture. This highlights that the large

magnitude aftershocks could affect the damaged buildings at the termination of the coseismic rupture and underlines the

importance of the investigation of the coseismic rupture for selsmic hazard assessment

¥ Our geodec sugest i geomer o he Z6 3. hi st sl The shllow depth of this crrauke Highghts the
hypothesis that in the Zagros Simply Folded Belt, the M < 6.1 earthquakes occurred within the sedimentary cov
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location of the Ganaveh slip patch. This angle decreases e T v, .tk .S, Tk o,
to zer0 at a depth of ~10 km and reaches a maximum of [ .
40°-50"at shallower depths -
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