
In short:
The seismograms close to the volcano 
evolve continuously, changing 
permanent their signal characteristics 
(see seismogram atlases below).

How to read the atlases?
Each data point represents 20 
minutes of three-component 
seismograms.
Close data points = similar 
seismograms.
Distant data points = dissimilar 
seismograms

Main message: 
seismograms contain interesting 
information about volcano 
beyond what is captured in 
catalogs and hand-designed 
features!
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Motivation:
● Seismic monitoring of a volcano 
relies on discrete event catalog 
and hand-designed features

● Long-duration and emergent 
signals might contain information 
which is not captured by 
conventional methods

The data:
Continuous 
seismograms from 
station SV13 and 
other temproary 
stations (August 2015 
to July 2016) at the 
Kamchatka Volcano 
Group in Russia.

1. Introducing the idea and the data of interest

Our idea: we treat the 
continuous seismogram 
as a constant flux of 
information and retrieve 
data-driven features, 
which might capture 
new information from 
emergent signals

2. From seismograms to a data matrix with a 
scattering network

5. How would a 50 component model 
look like for other stations?

6. We complement the continuous features with seismogram 
atlases obtained with manifold learning (UMAP).
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The stations closer to the volcano depict a diagonal line in the 
time feature space, indicating an interesting signal evolution 
due to the active volcano. With greater distance, the diagonal 
line degrades until it completely disappears.

The seismogram atlas depicts complex 
structures, especially during times of 
cataloged tremors. We see a continuous 
evolution of these signals, containing 
perhaps relevant information about 
underlying processes.

Outlook: 
How to link these data-driven 
observation to physical 
processes?
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A scattering network is a convolutional neural 
network with fixed wavelets instead of learnable 
neurons. We apply the scattering network with a sliding 
window obtaining a set of scattering coefficients for 
each window.

3. The 1st and 2nd order scattering 
coefficients for the east component of 
SV13

4. Independent Component 
Analysis (ICA) obtains continuous 
features for SV13

X = AS
A = mixing matrix
S = source matrix (features)
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How is it different to ICA?
ICA reduces the dimension of a high-dimensional dataset by finding a set of independent sources 
through maximizing their independence. ICA performs well in preserving pair-wise distances while 
losing information about local neighborhood. UMAP performs better in preserving the local 
neighborhood while distorting the global properties such as cluster sizes or distances between 
clusters.

7. Exploring the seismogram atlas of SV13
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5. The correspinding mixing weights 
for the 4 component model

6. Some mixing weights for the 50 
component model
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The mixing weights stored in matrix A help to understand the 
relation between the sources and the scattering coefficients.  
The weights of source 18-22 of the 50 component model show 
more variation between neighboring coefficients than the 4 
component model, indicating pattern changes during the 
tremor onset in December.

What is UMAP?
Uniform Manifold 
Approximation and 
Projection (UMAP) is 
a manifold learning 
technique, aiming at 
fitting a manifold to a 
high-dimensional 
dataset.

Preliminary conclusion:
● ICA and UMAP reveal interesting 
characteristics in the seismic time 
series close to the volcano: a 
complex evolution in time with 
continuous and sudden signal 
changes.

● It seems to be mainly related to 
tremors.

● It is difficult to relate these 
characteristics to physical processes 
(number of sources, moving source, 
change of source mechanism).

● Mapping the atlases between 
different stations might help to 
understand where and when these 
changes occur.
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