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1. Introduction

It Is widely recognised that the icy moons of our solar system are
Interesting candidates for the search for habitable environments beyond
Earth. While upcoming space missions such as the Europa Clipper and
JUICE missions will give us further insight into the local cryo-
environment of Jupiter’'s moon Europa, any conclusive survey to detect
life will require the ability to penetrate and traverse the ice shell and
access the subglacial ocean directly. Developing a robust, autonomous
cryobot for such a mission is an extremely demanding challenge and
requires a concentrated Interdisciplinary effort by engineers,
geoscientists and astrobiologists.
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A Fig. 1: Schematic sketch of the virtual testbed approach. It consists
of a description of the system, that is, the cryobot, the ambient, for
example, ice properties, and the calculated trajectory. As an example for
a cryobot/system, the EnEx-RANGE APU is shown (Weinstock et al.,
2020). The description of the ambient and the trajectory have multiple
levels of detail. For the ambient, a basic layer might consist of a
homogeneous description of the ice; further levels include more detall
like salt distributions of increasing complexity or dust within the ice.
Similarly, the trajectory modeling can have different complexity from
simple performance models to full 3D high-fidelity finite element models.

2. Mission Scenarios to Be Analyzed
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as obtained from a geodynamical
model. The model assumes an ice shell thickness of 40 km and a
maximum density contrast due to salts of 23 kg/m3. The colorbar for the
density is saturated at 922 kg/m3 to show density variations within the
ice shell. The snapshots show the distribution of temperature and
density after 3.8 Ma when the simulation reached a statistical steady
state.
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3. Computational Trajectory Prediction
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A Fig. 4: The forward motion of an ice melting probe is a complex multi-
physics problem involving several processes, such as contact melting
(A), vaporization (B), melting (C), heat conduction (D), and heat
convection (E). To approach the real-world complexity of the model there
are two main modeling options available: high-fidelity modeling that
solves the coupled problem numerically for temperature distribution, fluid
velocity and phase interfaces on a computational grid or semi-analytical
efficiency / velocity modeling that solves the energy balance to obtain
the melting velocity. We consider the latter approach in this work.
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A Fig. 5: Velocity and performance models estimate to which part the
thermal melting probe’s total available rate of heat flow Qiotq IS
leveraged for forward motion Q.¢. Two conceptually different approaches
exist that either neglect the melt water around the probe and assume
that heat is dominantly lost by direct lateral conduction into the ice (left
side of the symmetry axis), or alternatively that account for the melt
water and assume heat loss to be due to convective transport with the
melt water (right side of the symmetry axis).

Simplest assumption: all heat provided by the melting probe is
leveraged for forward motion (Aamot, 1967)

Qetrf = Qlatent T Qsensible = VAp;L + VApiCp,i(Tm — Ti)

More realistic: the ice is not directly heated, but the microscale melt
film, so convective losses can occur; CCM (Schiller & Kowalski, 2019)

Qtotal — Qlatent + Qsensible + Qconvective — V(Qlatent + Qsensible)
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Trajectories can be integrated from both approaches:

Velocity V can numerically be determined from the energy balance and
be integrated into a global trajectory (Boxberg et al., 2023):

t
2(t) = f V(Protar (O, Ti(2(0)), 1 (T, (2(D), ..), .. )de
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A Fig. 6: Trajectories in terms of the melting velocity as a function of the
depth and temperature profiles for the terrestrial scenarios: (a)
Antarctica—Byrd, (b) Antarctica—Dome C, (c) Antarctica—Law Dome,
(d) Antarctica—South Pole. The temperature is plotted as a solid gray
line and the trajectories of the four considered cryobots are plotted as
black lines. Note that the legend in (b) is valid for the other subfigures,
too.
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A Fig. 7: Trajectories for Europa scenarios with ice thicknesses of (a)
20 km—transit time (left) as well as velocity and temperature (right) with
respect to depth, (b) 10 km, and (c) 70 km.
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A Fig. 8: Uncertainties in transit time for the different considered
Europa scenarios plotted as box and whisker plots. The lower and upper
border of the box are the lower and upper quartile values of the data,
with a line at the median. The dashed line within the box is the mean.
The range of the data is shown by the whiskers. Outliers are plotted as
diamonds outside the ends of the whiskers. (a) Average melting velocity
over the whole ice thickness is plotted as the ratio of depth and transit
time in m/d for different ice thickness and assuming no density contrast.
(b) Transit time for different density contrasts, including uncertainty in
temperature and density profiles, depending on the location of the
landing site.

V¥ Fig. 9: Trajectory for Europa scenarios with an ice thickness of 40 km
and varying density contrasts. For each field, that is, time, velocity, and
temperature, the frequency of occurrence per depth is plotted color
coded according to the given colorbar. In addition, the mean is given by
a dashed line.
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5. Conclusions

We present ice transit and performance models as a first step towards a
modular virtual testbed (Fig. 1) for cryorobotic exploration technologies
used to investigate the habitability potential of englacial and subglacial
environments on icy moons. While we focused on rather idealized
models within the scope of this work, future extensions to the virtual
testbed will include models of higher complexity and consider non-
uniform distributions of salt concentration, which have been observed In
terrestrial icy drilling. Furthermore, the effects of additional impurities,
such as dust, on the trajectories will be investigated in future studies.
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