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The assemblage used for the experiments is the 10/4. 
Samples were 0.62 mm in length and 0.8 mm in diameter 
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While collecting the diffraction patterns, we measured
the wave velocities using a LiNbO3 transducer

X-ray window

Quartz is a common constituent of most rocks in the Earth's continental
crust an it undergoes the α-β transition at deep crustal conditions. The 
transition is well-known at ambient pressures, but only few works report
its behaviour at high pressures. Thermodynamic databases (Abers and
Hacker, 2016) predict a dramatic increase in Vp in the high T field with
depth, which results in the attribution of high velocities zones in seismic
tomography data to this transition. Here, we performed high pressure
and temperature experiments using a multi-anvil press. Quartz lattice
parameters were obtained using synchrotron X-ray radiation (ESRF)
while simultaneously measuring acoustic velocities using ultrasonic
pulse-echo travel times.  

 Experiments have been conducted at the Large Volume Press at the 
ID06 beamline (ESRF).   

In order to observe the behaviour of the α-β transition at different conditions we stacked the 
diffraction patterns collected at a constant pressure while increasing the temperature and vice versa. 
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We performed a sequential refinement to obtain volume and cell parameters. At the same time, 
we collected wave velocities from double travel times and X-ray absorption images of the sample.    

In the β-field, Vp increases rapidly and reaches 
higher values than in the α-field.   

From the refinement, volumes and cell parameters 
estimates don't seem to show the transition at the 
same time as the acoustic data.  
According to predictions from the EoS 
(Angel et al. 2017), after the transition, with increasing 
temperature, the volume should remain constant or 
slightly decrease.      

As predicted by thermodynamic modelling, we observe 
that approaching the transition, Vp varies more than 
Vs, reaching a minimum that marks the α-β 
transition.   

EoS from Angel et al. 2017
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 In our preliminary results, we observe that after the α-β transition the volume keeps increasing. 
This unexpected behaviour could be explained by a stress gradient or a temperature gradient in 
the sample. In both cases the sample could be inhomogeneous and characterized by domains at 
different stages of the transition. Some observations on the diffraction peak widths, suggest that the 
sample is not transforming in a homogeneous way, causing the incrase of the FWHM of the 
diffraction peaks after the transition. Once the entire sample is transformed to β-quartz (i.e. velocities 
are constant), it behaves as predicted by the EoS.  
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At this point, one can calculate the elastic moduli from Vp and Vs. In our results, we obtain that 
the bulk modulus (K), calculated at a constant pressure of 1 GPa and during a temperature ramp, 
has values of around 30 GPa in the α-field and of around 55 GPa in the β-field. Interestingly, the bulk 
modulus does not drop to 0 GPa at the transition and is significantly weaker than predicted by the 
EoS calculations.   
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