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1. Research motivation & objectlves
Why distinguish different bioaerosols?

2. Methodology and data description

Methodology and workflow . Dataset——by Rapid-E
® Two deep learning methods (Autoencoder/Bilstms-Autoencoder) were used to get ® Rapid-E was deployed at HKUST

aerosol features, then Kmeans/Genieclust clustered aerosols via aerosol features. supersite from June to November
® Clusters species were then identified via their properties (average FL/images, etc.). 2018 to monitor bioaerosols.

Deep learning to exact aerosol main features

® Bioaerosols, derived from biological sources,
are a subset of atmospheric aerosols, consisting
mainly of viruses, fungal spores, and pollens.

® Different bioaerosols have various effects on Obtain aerosol species :

® Rapid-E could obtain a variety of
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4. Determine bioaerosol species in each cluster

® C(Cluster 8 should be non-bioaerosol aerosols (e.g. marine aerosols) as they didn’t have FL
response and mainly came from the south direction (ocean).

® The Bilstms-AE and Genieclust combination successfully separated rare pollen (cluster 3-its
FL pattern was consistent with the experimental data), while no pollen was identified in the
other combinations. Other clusters were suspected to be fungal spores.

3. Aerosol features from deep learning

® The reconstruction accuracy of Bilstms-Autoencoder
(Bilstms-AE) was higher than that of Autoencoder (AE).

® Feature dimension of Bilstms-AE was greater than AE.

® The FL features obtained by deep learning served as the
foundation for the aerosols clustering.
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® Fungal spores
were the
main species.

Aerosol number of each cluster

® Fungal spores
increased

Reconstruction

° ® |ncreasing the number of clusters facilitated the identification of different bioaerosols.
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FL of clusters under different methods (Cluster number=9)

Wind analysis and average images/size of clusters (Cluster number=9)

and exhibited sensitivity to temperature and rainfall.



