

Effect of shallow heterogeneities on wavefield gradients measurements

Mirko Bracale¹, Helle Pedersen¹, Romain Brossier¹, Michel Campillo¹

¹ISTerre, Université Grenoble Alpes

Funded by the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No. 955515.

How sensitive are the wavefield gradients to shallow localized velocity changes?

In this study we **investigate the sensitivity of the wavefield and the wavefield gradient measurements** to shallow localized velocity changes.

Seismic simulation software		Spectral element simulation software (SEM46 ¹) modified: rotations and strains as a direct output			
Exper perfo		riments rmed		Weak anomaly (10% velocity drop)]
	Seismi a veloc	ic array placed above city anomaly	è	Strong anomaly (70% velocity drop)	

¹ Brossier et al. 2019, "Efficient time-domain 3D elastic and viscoelastic full-waveform inversion using a spectral-element method on flexible Cartesian-based mesh"

We performed each simulation two times, the first time considering a fully homogeneous medium, the second time including the seismic anomaly.

How a seismic anomaly interacts with the wavefield and its observables?

Phase shift

The seismic phases acquire a delay or advance with respect to the homogeneous case.

Very precise methods to measure it by frequency-time decomposition, adapted to slight velocity variation, the continuous wavelet transform²

Amplitude variations

The normalized waveform changes its amplitude when the anomaly is placed in the medium

Comparison of the amplitude in the time domain

²Mao et al 2019, "On the measurement of seismic traveltime changes in the time-frequency domain with wavelet cross-spectrum analysis"

Weak anomaly simulation

Delay measured at the 10th line of receivers in three frequency bands, 3-4Hz, 7-8Hz, 9-10Hz

10% velocity drop

Strong anomaly simulation

The experiment focused on analyzing the amplitude variation due to the presence of a strong velocity change

¹ISTerre, Université Grenoble Alpes

The experiment focused on analyzing the amplitude variation due to the presence of a strong velocity change

Simulation setting

Grid size = $100 \times 100 \times 100$ m Element size = $1 \times 1 \times 1m$ Source function = Gaussian, corner frequency 250Hz Source moment tensor $M_{xx}=M_{yy}=0$, $M_{zz}=1$ Heterogeneity standard deviation = 10%

Background

Vp = 1000m/s6 1e7 source function Vs = 300m/s $Rho = 1500 kg/m^{3}$ 4 з 2 Fundation 1 Vp = 4400 m/s0.00 0.02 0.06 0.08 0.10 Vs = 2200 m/s0.04 Time (s) Rho = 1500kg/m^3 source function spectrum 105 10³ 10¹ Source function ò 50 100 150 200 250 300 Freq (Hz)

Amplitude of the field

dx/dt

 ϵ_{xx}

Observations

Born approximation

Close to the anomaly a **medium field term** need to be taken into account in the gradients

The wavefield and its gradient behave in a different way at distances smaller than $\lambda/2\pi$

Reflection conditions at the interface

The incident wave and the reflected wave **interfere destructively or constructively** depending on whether the change in velocity is positive or negative.

If the wavefield increases, the gradient decreases (and vice versa). This effect is visible up to $\lambda/2$

Observations

Born approximation

Close to the anomaly a **medium field term** need to be taken into account in the gradients

The wavefield and its gradient behave in a different way at distances smaller than $\lambda/2\pi$

Reflection conditions at the interface

The incident wave and the reflected wave **interfere destructively or constructively** depending on whether the change in velocity is positive or negative.

If the wavefield increases, the gradient decreases (and vice versa). This effect is visible up to $\lambda/2$

Interference between direct and scattered wave Ratio of the spectrum

Conclusions

Weak anomaly

In mediums where the velocity exhibits changes up to 10%, the wavefield gradients do not show any significative difference in therms of phase shift or amplitude change if compared to the wavefield itself.

Strong anomaly

- In presence of an interface with strong impedance contrast, the wavefield gradients amplitude changes in proximity of the anomaly.
- The comparison between the amplitude of the wavefield gradients and the wavefield itself could provide information about strong heterogeneity in the subsurface, such as **faults, buried objects** and **empty cavities**.