

The 1531-1540 dry summers in Europe - Identifying potential drivers of decadal dry spells using climate reconstructions and ensemble simulations of the past 600 years

Motivation

The decade **1531-1540** was characterized by a high number of dry summer episodes, making it the **driest summer decade** in some areas of Central Europe (Brazdil et al, 2020).

With our novel atmospheric model simulations and paleo-reanalyis (ModE-Sim and ModE-**RA**) we can complement established climate reconstructions to in-depth analyse the variability and drivers of such **decadal dry spells over** Europe.

Our previous work already showed that ModE-Sim can be used to analyse the variability of preindustrial extreme events such as heatwaves (Lipfert et al, 2023, submitted).

Datasets

- **ModE-Sim** 36 member ensemble of historical atmospheric simulations based on ECHAM 6.3.05p2 using observed forcings over the period 1420-2009 with a horizontal resolution of 1.8° (Hand et al, 2023, EGU23-14112)
- ModE-RA global monthly paleo-reanalysis covering 1421-2008 using offline data assimilation with a horizontal resolution of 1.8° (Valler et al, 2023, EGU23-386)
- Reconstructions of European summer tempe**ratures** from Luterbacher et al (2004)
- Reconstructions of seasonal precipitation totals over Europe from 1500-2000 from Pauling et al (2006)
- •**PDSI** indices from the Old World Drought Atlas (OWDA) covering 0-2012 (Cook et al, 2015)
- Reconstructions of sea level pressure (SLP) fields from Luterbacher et al (2002)

Laura Lipfert¹, Ralf Hand¹, Jörg Franke¹, Stefan Brönnimann¹

(1) Institute of Geography and Oeschger Centre for Climate Change Research, Universität Bern, Bern, Switzerland

reconstructions which were investigated in previous research on this decade (i.e. Brazdil et al., 2020)

Decadal drought variations 1500-1800

further investigate decadal dry periods and indentify the drivers of decadal hot and dry periods in Central Europe as well as other regions.

Figure5: JJA total precipitation (PDSI) anomalies for 1500-1800 over Central Europe (climatology 1500-1800) for ModE-Sim, ModE-RA and the OWDA (Pauling reconstructions)

ModE-Sim and ModE-RA are able to simulate decadal dry periods over Europe similar (and even stronger) to the 1531-1540 decade.

Decadal JJA PDSI variations over Central Europe

First Conclusions & Outlook

- ons
- events
- the future

References: Lipfert, Laura et al. (submitted): A global assessment of heatwaves since 1850 in different observational and model datasets, Submitted to GRL (2023) Hand, Ralf et al. (submitted): ModE-Sim - A medium size AGCM ensemble to study climate variability during the modern era (1420 to 2009), Submitted to Geoscientific Model Development (2023). Veronika Valler et al. (submitted): ModE-RA - A global monthly paleo-reanalysis of the modern era (1421 to 2008), Submitted to Nature scientific data (2023). Brázdil, Rudolf, et al. "Central Europe, 1531–1540 CE: The driest summer decade of the past five centuries?." Climate of the Past 16.6 (2020): 2125-2151. Pauling, Andreas, et al. "Five hundred years of gridded high-resolution precipitation reconstructions over Europe and the connection to large-scale circulation." Climate dynamics 26 (2006): 387-405. Cook, Edward R., et al. "Old World megadroughts and pluvials during the Common Era." Science advances 1.10 (2015): e1500561. Luterbacher, Jürg, et al. "Reconstruction of sea level pressure fields over the Eastern North Atlantic and Europe back to 1500." Climate Dynamics 18 (2002): 545-561. Luterbacher, Jurg, et al. "European seasonal and annual temperature variability, trends, and extremes since 1500." Science 303.5663 (2004): 1499-1503

• Magnitude and distribution of decadal dry spells in ModE-RA and ModE-Sim is realistic and comparable to other climate reconstructi-

• We can compare drivers of preindustrial dry spells and heat periods with present day

• Our analysis will be complemented with high resolution model simulations and reanalysis in

• Combination of decadal drought and heatwave analysis (Lipfert et al, 2023) contributes to a better understanding of past climate extremes