Comparative study of the surface energy and mass balance of Kersten Glacier on Mt. Kilimanjaro: **COSIPY vs. previous modeling**

Marlene Schramm and Thomas Mölg Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Germany marlene.schramm@fau.de

Background on Kersten Glacier

血 Mt. Kilimanjaro, 3° S, East Africa

✓ Altitude ca. 5000-6000 MSL

Freely exposed to midtropospheric flow

 \Rightarrow important climate indicator (Mölg et al., 2009)

Daily temperature cycle exceeds intra-annual variation

Methods

Investigation period: 2005-02-09 to 2008-01-03

surface temperature net energy flux at surface net radiation flux net sensible heat flux net latent heat flux conductive ground flux penetrating radiation ρ_{sfl} surface layer density d_{sfl} surface layer thickness spec. heat capacity of ice

 T_s for surface layer of height $d_{sfl} = 0.5$ m $T_s(t + \Delta t) = T_s(t) + E_{Net}(t) \frac{-1}{\rho_{sfl} d_{sfl} c_i}$

Results & Conclusion

• COSIPY overestimated melt; other mass fluxes similar

	COSIPY	AWS	2009 Si
Hours T_s at melting point	25%	5 %	4
Mass balance $[t/m^2]$	-13.58	-0.65	-0.6
Melt $[t/m^2]$	-14.10	/	-0.9
Refreezing $[t/m^2]$	0.50	/	0.3
Turbulent water vapor flux $[t/m^2]$	-1.39	/	-1.7

Albedo feedback due to low snow depths on Kersten

- Future work: vary parameters in COSIPY
- Implementing a second T_s scheme In COSIPY might help to better accommodate tropical glaciers.

In our setting, COSIPY v1.4 severely overestimated melting on tropical glacier Kersten.

m. % 65

97 30

72

Measurements & 2009 Simulation **COSIPY** Simulation 2008-01 2007-01 lime

Vote here

ndidate Presentation contest

Additional Information

Fig. 1 Diurnal Cycle of the Surface Temperature: 2009 Sim. COSIPY $10 \quad 12 \quad 14 \quad 16$ Hour of the Day

Fig. 3 Diurnal Cycle of the simulated Energy Fluxes:

AWS: Automatic Weather Station COSIPY: COupled Snowpack and Ice surface energy and mass balance model in PYthon

References

- Mölg et al. (2009): Quantifying climate change in the tropical midtroposphere over East Africa from glacier shrinkage on Kilimanjaro, J. Climate, 22, 4162–4181
- Sauter et al. (2020): COSIPY v1.3 an open-source coupled snowpack and ice surface energy and mass balance model, Geosci. Model Dev., 13, 5645–5662
- For this poster, the 'betterposter' poster design template by Fabio Crameri based on Mike Morrison's initiative (https://osf.io/ef53g/) was used. It is available from the s-Ink.org collection.

Friedrich-Alexander-Universität Erlangen-Nürnberg