

Transferability of data-driven models to map urban pluvial flooding Omar Seleem, Georgy Ayzel, Axel Bronstert, and Maik Heistermann Institute of Environmental Science and Geography, University of Potsdam, Germany

1- Introduction

Urban pluvial flooding can occur anywhere in an urbanized watershed, even in areas without previous flooding. Traditional 2D hydrodynamic models are costly and limited in their scope. Data-driven models are emerging as a more cost-effective alternative but face challenges in generalizing beyond the training domain. Hence, we want to know:

Do traditional machine learning algorithms outperform convolutional neural networks (CNNs)?

transfer learning techniques improve the model Can performance outside the training domain ?

→ The **RF models** outperformed the **CNNs models** for predictions within the training domain, presumable at the cost of overfitting

3- Models transferability to map flood susceptibility

- flood predicted \rightarrow The susceptibility map for Berlin using random forest model (RF) at a 2 m spatial resolution.
- \rightarrow The random forest models outperformed the CNNs models.
- \rightarrow The models could identify susceptible outside the training area.

Model transferability to another city

4- Models transferability to predict flood water depth

→ The CNNs models had significantly higher potential than the **RF models** to generalize beyond the training domain

- \rightarrow Comparison of water depths from different models and TELEMAC-2D model for a 100 mm precipitation event for study area SAO. The figure highlights the boundary of two topographic depressions within study area SAO where runoff accumulates.
 - U-Net-SA1&2 → SA0 model transferred The outperformed other models. It predicted the most identical inundation extent as the TELEMAC-2D model.
- → The **RF-SAO** model memorized the training data and thus predicted the water depth accurately.

3

Scan to read the article

 \rightarrow The predicted flood susceptibility map for Münster by a random forest model that had been trained for Berlin.

The reported flood damage locations from July 2014 rainfall event with the agree predicted map.

Scan to read the article

Flood susceptibility map for Münster

Take Home Message

Random models forest are superior to mapping urban pluvial flood susceptibility.

CNNs models have a significantly high potential than the random models generalize forest to beyond the training domain.

CNNs models could better benefit from transfer learning techniques to boost their performance outside training domains.

Future research requires testing transferability different with environments in (cities mountainous in more