Transferability of data-driven models to map urban pluvial flooding

Omar Seleem, Georgy Ayzel, Axel Bronstert, and Maik Heistermann

Institute of Environmental Science and Geography, University of Potsdam, Germany et

1- Introduction 3- Models transferability to map flood susceptibility

Urban pluvial flooding can occur anywhere in an urbanized watershed,
even in areas without previous flooding. Traditional 2D hydrodynamic
models are costly and limited in their scope. Data-driven models are
emerging as a more cost-effective alternative but face challenges in
generalizing beyond the training domain. Hence, we want to know:

- The predicted flood
susceptibility map for
Munster by a random
forest model that had
been trained for Berlin.

- The predicted flood
susceptibility map for
Berlin using random forest
model (RF) at a 2 m
spatial resolution.

Training area g

Do traditional machine learning algorithms outperform

- The random forest models
a convolutional neural networks (CNNs)?

outperformed the CNNs
models.

-> The reported flood
damage locations from
July 2014 rainfall event
agree with the
predicted map.

Can transfer learning techniques improve the model
performance outside the training domain ?

—> The models could identify
flood susceptible areas
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