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MELT-PERIDOTITE INTERACTIONS AT SUBDUCTION ZONES
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instant reaction network of veins

Spandler and Pirard 2013 (Lithos)

The fate of crust-derived melts at warm
subduction zones and the transport mechanism of
slab-derived components to the supra-subduction
mantle is still a matter of debate.

Migration of crust-derived melts into the mantle by
porous.flow is limited by instant reaction with the
peridotites and the consequent production of
metasomatic orthopyroxene (= clinopyroxene)
and phlogopite hybrid rocks at the slab-mantle
interface.

Alternatively, the occurrence of a network of
pyroxenite veins in metasomatised mantle
xenoliths from arc lavas indicates that
metasomatic melts may percolate the mantle by a
mechanism of focused flow.

Melt-peridotite interaction via reactive porous flow
has been largely studied in mantle samples from
oceanic and subcontinental settings. We know
little about the role of these interactions at the slab
interface.




THE CASE STUDY OF BORGO (CENTRAL ALPS)
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Gneiss with lenses of mafic
and ultramafic rocks

Y gneiss

The Borgo outcrop of the Monte Duria area (Adula-Cima
Lunga unit, Central Alps, Italy) is an ideal example of melt-
peridotite interaction which occurred under a deformation
regime at HP. Grt-peridotites occur in direct contact with
migmatised orthogneiss and eclogites that record a
common HP peak at 2.8 GPaand 750 ° C
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THE CASE STUDY OF BORGO (CENTRAL ALPS)

At Borgo, migmatised eclogites are in

.| direct contact with retrogressed Grt-
peridotites showing a Grt compositional
= | layering, crosscut by a subsequent LP
| Chl foliation.
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THE CASE STUDY OF BORGO (CENTRAL ALPS)
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We analysed the composition of 16 samples
collected along a profile, from the eclogite-peridotite
contact to the inner part of the peridotite lens

Tremolitites occur both at the peridotite/eclogite contact
and within the peridotite body and derived from the
retrogression of previous Grt-websterites formed after the
interaction at HP between eclogite-sourced melts and
peridotites. The peridotite Grt-layering flows into the
necks of the boudins, indicating that the stretching of the
tremolitites (previous Grt-websterite) occurred when the
peridotites were still in the Grt stability field.

Malaspina et al. 2023 (GPL)
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THE CASE STUDY OF BORGO (CENTRAL ALPS)
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BULK ROCK GEOCHEMISTRY
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Chl-peridotites: Mg# (90), high Ni, and low Al,O,; + CaO.

Tremolitites: Mg# (0.91) and Ni up to 1390 pg/g plotting into the field of the
ultramafic compositions (marked difference with respect to Grt- and Spl-
pyroxenites of subcontinental ophiolites). They show high SiO,, high CaO
and Al,O; vs SiO,/MgO close to the composition of metasomatic Grt-
orthopyroxenites and websterites from Dabie-Shan, which were formed after
the interaction of Grt- harzburgites with Si-rich crust-derived melts at UHP




BULK ROCK GEOCHEMISTRY

Depleted MORB Mantle
Salters and Stracke, 2004 (GGG)
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Peridotites: REE close to or slightly lower than the DMM, with fractionated patterns enriched in LREE relative to
the MREE and HREE.

Tremolitites: REE up to 4.63 X PM with enrichments in MREE and LREE/HREE two orders of magnitude higher
than subcontinental pyroxenites from External Ligurides. Both peridotites close to the contact with the mig-

matised eclogites, and tremolitites display a negative Eu anomaly, resembling that of eclogite leucosome
produced from a Pl-bearing source.




REE GEOCHEMICAL EVOLUTION IN GRT-WEBSTERITES AND
PERIDOTITES AT HP
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Tremolitites show a progressive increase in LREE from the contact up to about 30 m within the adjacent peridotite.
Among the fluid mobile elements, both tremolitites and peridotites show a progressive depletion in Pb from the
contact to 80 m within the peridotite body, whereas Sr is almost constant .




REE GEOCHEMICAL EVOLUTION IN GRT-WEBSTERITES AND
PERIDOTITES AT HP

To test this hypothesis, we have numerically
simulated the REE gradient applying the Plate Model
of Vernieres et al. (1997) using the REE composition
of the eclogite leucosome of Pellegrino et al. (2020)
as starting melt and the DMM as peridotite matrix.
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Step 1 DMM
DMM-DB131

High peridotite assimilation EEJcsc;some
Low crystallisation rate DB177

La Ce Pr Nd Sm Eu Gd Dy Er Yb Lu
In the first step, the crustal melt derived from partial melting of

DB158
@

eclogites reacts with the peridotite at the eclogite-peridotite DBIS6,  ppiss i D188

DB182 pp1gs \ DB153 PBI87\®
DB146 ©®

interface. The liquids resulting from increasing interactions are
assumed to form veins of websterites that are supposed to be the EHEEtS
protoliths of tremolitites preserving their original REE composition.
After several interactions, the final reacted melt crystallised at the #
eclogite-peridotite contact likely forms the first websterite DB177,
showing a diffusive contact with retrogressed Grt-peridotite .




REE GEOCHEMICAL EVOLUTION IN GRT-WEBSTERITES AND
PERIDOTITES AT HP
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the reacted melt infiltrates the peridotite producing the
j; Bglié REE gradient observed in the tremolitites profile.
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We assume an initial peridotite porosity of 20 % that reflects a hig Ca1gy DS DBISA L
perido- tite assimilation coupled with the progressive melt ¢ I e

consumption through melt-peridotite reaction during the wigic
percolation (i.e. a high extent of transient melt crystallisation),
simulated by the progressive increase in crystallisation rate of 50
% Opx, 20 % Cpx, 20 % Grt, 10 % Phl

100 m



REE GEOCHEMICAL EVOLUTION IN GRT-WEBSTERITES AND

PERIDOTITES AT HP
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REE GEOCHEMICAL EVOLUTION IN GRT-WEBSTERITES AND
PERIDOTITES AT HP
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LaN and CeN/YDbN resulting from Step 2 calculations (yellow squares) compared with those measured in our
tremolitite (coloured squares) along the first 30 m from the eclogite-peridotite contact. Grey scale symbols show
the sensitivity of the model to the different extents of initial and final crystallisation rate of the percolating melts in
the fractionation of LREE/HREE



POSSIBLE PERSPECTIVES

The numerical simulation aims to model the effect

of interaction between crust-derived melts

produced by partial melting of mafic components

of the slab with the supra-subduction mantle
peridotite at sub-arc depths. This includes a first
step of crustal magma stagnation and melt-
peridotite reaction at the slab-mantle interface and
the following metre-scale percolation of reacted
melt within the overlying peridotite that buffers the *
composition of the infiltrating melt.

Reactive melt infiltration at HP is a plau3|ble 5
mechanism to modify the REE budged of mantle -
peridotites that lie on top of the subducting crustal
slab. Samples from those settings tend to show
peculiar LREE “spoon-like” fractionations.




SENSITIVITY OF THE MODEL

PM-normalised Yb vs La/Sm of melt resulting from the
SDAEEEO N ORI [ percolation of the liquid after Step1 at variable porosity
g (squares) and 30% or 50% of orthopyroxene (triangles and

circles) in the crystallizing assemblage.
¢ DB131 The model shows that at high Ma/Mc ratio the addition of
W DB177 variable amount (30 or 50%) of orthopyroxene (having
O Liquid Step1 rather low Kd for the REESs) in the crystallizing assemblage
O porosity 0.01 does not impact significantly on the melt REE composition
O porosity 0.15 ; :
[ porosity 0.2 resulting from the reaction. We also evaluated the role of
B porosity 0.25 variable extent of initial porosity: Figure S-6b shows that
B porosity 0.3 porosity higher than 0.1 fails to reproduce the low LaN/SmN
RISt of melt that generated the retrogressed Grt-websterite
(DB177) close to the contact with the peridotite-eclogite
interface. On contrary, assuming porosity lower than 0.1 the

model results in too fast melt LaN/SmN lowering.




