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Fig. 2: The total dv/v over 25 years (1997-2022) inverted onto a spatial grid. We plot dv/v as a
coloured mask on top of the regional topography. dv/v increases dominate the grid. The location of
the highest increase coincides with the location of the magma chamber⁶. For the spatial inversion,
we use a modified variation of the solution proposed by Obermann et al., 2013² (see methdos panel

for details). The locations of the seismic stations are indicated by red inverted triangles.

Long Term Trends
•Until 2004: dv/v remains relatively steady

•2004-2008 (during MSH eruption): fluctutations in dv/v - probably related

to (a) changes in the wavefield and (b) changes in the medium associated

to the eruption

•After 2008: Strong velocity increase of locally up to 12% (see Fig. 2)

probably due to a deflation of the feeding magma chamber located below

the maximum increase⁶

•GPS data shows a downwards motion coinciding with the velocity increase

Fig. 1: The location of MSH is depicted in
red. We plotted the seismic stations used
for this study as grey inverted triangles. All

stations are mantained by the Pacific
Northwest Seismic Network.

Introduction

Passive Image Interferometry (PII)⁴ relies on the ubiquitous ambient
seismic noise to quantify changes in the seismic propagation velocity
(dv/v). Despite being a relatively novel tool, it has shown promising results
in volcano monitoring (e.g., ¹). Here, we apply it to a very long continuous
dataset recorded at Mount St. Helens (MSH). We show that dv/v relates to
various physicial properties of the medium.
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Seasonal Cycles
•We highpass-filter dv/v to focus on higher-frequent variations

•dv/v exhibits clear seasonal variations most likely due to
variations in the pore pressure and surface load

•We attempt to model pressure-induced velocity changes using
snow load, snow melt, and precipitation data with an approach
similar to ³ & ⁵

•After MSH's eruption the medium's response to pressure changes
is strongly altered - expressed as changes in amplitude and phase
of the dv/v time series

•Hypothesis: The damage induced by MSH's eruption increases the
medium's permeability/diffusivity �

Fig. 3: Seasonal variability of the seismic velocity. In black, we plot the highpass-
filtered dv/v from a central gridpoint located around MSH's summit. The dashed lines
show two possible models purely derived from hydrological input (i.e., precipitation
and meltwater) and snowload. We indicate the diffusivity � used for the two models.

The red background indicates MSH's 2004-2008 eruptive crisis.
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Methods
•We exploit energy of the ambient

field in octave-wide windows from

0.25 to 2 Hz

•Preprocessing: taper, instrument

response removal, one-bit-

normalisation, spectral whitening

•Interstation cross-correlation in

the frequency domain of all

available components

•dv/v is retrieved using the

stretching technique⁴

•Automatic QC of dv/v time-series

based on a coherence threshold

•We derive dv/v in the time-

domain, apply a spatial

inversion², and integrate along

the time-domain on the spatial

grid to obtain our final estimate

Fig.4: Illustration of a spatial
sensitivity kernel between two

seismic stations. We employ such
kernels to estimate a spatial dv/v

time series.


