

amicie.delahaie@ens.fr

*i*n

Amicie DELAHAIE¹, Lauric CÉCILLON¹, Marija STOJANOVA¹, Samuel ABIVEN¹, Pierre ARBELET², Dominique ARROUAYS³, François BAUDIN⁴, Antonio BISPO³, Line BOULONNE³, Claire CHENU⁵, Jussi HEINONSALO⁶, Claudy JOLIVET³, Kristiina KARHU⁶, Manuel MARTIN³, Lorenza PACINI^{1,2}, Christopher POEPLAU⁷, Céline RATIÉ³, Pierre ROUDIER⁸, Nicolas SABY³, Florence SAVIGNAC⁴, Pierre BARRÉ¹

École Normale Supérieure de Paris, Laboratoire de Géologie, France (<u>amicie.delahaie@ens.f</u>

- Genesis, Paris, France NRAE, Info&Sols, 45075, Orléans, France
- ulty of Agriculture and Forestry, University of Helsinki, P.O. Box 56, 00014 Helsinki, Finland
- Janaaki Whenua Landcare Research. Private Bag 11052. Manawatū Mail Centre, Palmerston North 4442, New Zealan

Introduction

Context

• Thermal and simple physical fractionations allow to measure SOC pools on large sample sets (~1000 samples).

• Rock-Eval[®] thermal analyses coupled to the use of the PARTYsoc machine learning model allow fractionating SOC into active **SOC** (mean residence time (MRT) ~ 30 years) and **centennially stable SOC** (Cécillon et al., 2021).

• Simple physical fractionation schemes allow distinguishing the more labile POC fraction (MRT \sim 10 years) from the more **stable MaOC** fraction (MRT \sim 50 years) (Balesdent et al., 1996).

Objectives

• We evaluate for the first time the redundancy or complementarity of the active (C_a) vs POC and stable (C_s) vs MaOC fractions. For this purpose, we compared the amounts and drivers of these fractions on a large data set from mainland France with the following hypotheses:

(1) as they do not target the same kinetic pools, POC and C_a as well as MaOC and C_s will have different sizes;

(2) proportions of fractions are influenced by land cover with higher proportion of POC and C_a in grassland and forest soils; (3) the importance of pedological drivers on pool sizes will increase with MRT, whereas the importance of land cover will decrease with MRT;

(4) the quantity of MaOC and C_s will saturate at a certain TOC level.

Size?

Thermal fractionation	Active Carbon (C _a)		Stable Carbon (C _s)		
		1	.00	\longrightarrow Mea	
Particle-size fractionation	Particulate Organic Carbon (POC)	Mineral-associated Organic Carbon (MaOC)			

Material & methods

The French Soil Quality Monitoring Network: RMQS (Jolivet et al., 2006)

• 2038 topsoil samples.

 Rock-Eval[®] thermal analyses and physical fractionation on significant subsets.

• Land cover (cropland, grassland, forest and vineyard), climatic and main soil properties for each site.

The PARTY_{SOC} model (Cécillon et al., <u>2018; 2021) (n=1621)</u>

• PARTY_{SOC} is a machine-learning model (Random Forest) using the Rock-Eval[®] data to quantify the proportion of carbon which is stable over a century.

The POC/MaOC fractionation (n=954)

• Dispersion of the soil in $Na_6[(PO_3)_6]$. Sieving to 3 fractions (>0.2 mm; 0.05–0.2 mm, <0.05 mm), grinding. N measurements by • C and

elemental analysis.

A Random Forest model to determine the drivers of C_a, C_s, POC and MaOC fractions

• The	driver	'S We	ere	sepa			
categories:							
Land cover:		Cr	Croplands				
		Fc	Forests				
		Gr	rass	lands			
		Vi	ney	ards			
Clima	te: N	1ean	anr	nual i			
	Ν	Near	n an	nual			
Pedol	ogy:	Clay	Clay, Sand				
		рΗ					
		Inor	rgar	nic ca			
		Am	orpl	hous			
			1.0				

& crystalline iron oxyhydroxides

Exchangeable calcium • We estimated the relative role of each category for the 4 fractions by two kinds of calculations: the Mean Decrease in Impurity (MDI), which estimates the importance ranks of the features, and the permutation-based score variation, which calculates the decrease in a model score when a feature value is randomly modified.

Complementarity and drivers of thermal and physical soil organic carbon fractions at the scale of mainland France

residence /ears)

parated into 3

rainfall temperature

arbon

Results

I) Fractions are of different size

We limited our results to samples with a soil organic carbon content < 120 g/kg soil to exclude organic soils (e.g. peatlands).

MaOC $\sim 2.2 \times C_{s}$ $POC \sim 0.45 \times C_{a}$ C_s/MaOC standard deviation: 0.13 POC/C_a standard deviation: 0.23

III) Pedology drives the stable fractions, land cover and climate drive the labile fractions

C_s and MaOC show similar drivers, as well as C_a and POC.

Climate and land cover parameters have an important influence on POC and to a lesser extent on C_a; their effect is weaker on MaOC and even smaller on C_{s} .

Discussion and conclusion

• Our hypotheses based on previous works (Balesdent et al., 1996; Cécillon et al., 2021) regarding the size of the fractions and their drivers were globally confirmed by the data analysis: C_a and POC, as well as C_s and MaOC, show strong differences in size, on top of differences in MRT (Balesdent et al., 1996; Cécillon et al., 2021), as summarized on the bottom figure. Pedology is the dominant factor for all the fractions, but climate and land use have a much greater importance in POC and C_a, which is consistent with the fact that these compartments are very dependent on the fresh inputs. • Although the proportion of both labile pools is smaller Thermal fractionation Active Carbon (C_a) Stable Carbon (C_s) in croplands than in forests and grasslands, it is surprising 50 that the POC fraction is similar in grasslands and vineyards. • Our results suggest that the MaOC fraction does

not saturate with TOC.

