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Measuring uncertainty of Neural Networks: present vs. future
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How do we now analyse the
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What was the inspiration and how do we want to achieve it? UNIVERSITAT

a quick overview of our motivation TUBINGEN

... they are able to process large amounts of data
and compute accordingly fast, even for high-
resolution maps (McBratney et al., 2003)

increased g ... with prepared build-in functions easy to access,

Use of Articfical Neural because
Networks in Geoscience

0 e . but i !
Q ... they are difficult to interpret programm and not dlffI.Cu|t to .cu?stomls.,e
Q @) ... were more accurate in predicting soil taxonomy
A e A ... black box model . :
o ) ; ) ) ) classes and obtain high- resolution maps (Brungard
- Q0 0 ... overconfident in areas with et al. 2015)
5 o Vinzg 0 low data or far away (nguyenetal,
g '; f « S 2014; Hein et al., 2019) LY
4 ' OIS D O - =| ... using Last-Layer Laplace Approximation to
oF AR e) , ’ - > | estimate the posterior uncertainty of the
S s\ ¥ and still

model, created by Kristiadi et al., 2020, which
works well with MINST or CIFAR10

Q
Q
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... often just used a single statistical number to evaluate hy?
their whole prediction (Meyer and Pebesma (2022)) why: 1
... they do not go beyond looking at the probability of the

predicted class or related statistical calculation methods
(Wadoux et al. (2020))

... help in the interpretation of the results
... analysis of the prediction of the artificial
network for a possible transferability

e, ﬁ . 3 | provide new insights into soil processes and

the structure of the different domains.




Study area

and its special features
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BodengroBlandschaften
Grundgebirgs-Schwarzwald
Obere Gaue
Mittleres und Westliches Keuperbergland
Mittleres und Westliches Albvorland

Mittlere und Westliche Alb
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(A) Digital elevation model of the study area with its important landscapes: outstanding areas Swabian Jura (SJ) and Black Forest (BF) with
their unique soil types, (B) Distribution of the five major soil landscapes with different characterisation: the lightest blue was formed
under maritime conditions, the others under terrain, (C) location of the study area in Germany
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Examples from our collected input data

topographic, hydrological, spectral, geological Saring nge
permitted

DEM and its derivates

166 Elevation 166 Soil moisture index z
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General setup

overview of our approach Sharing not

permitted

General structure of a soil type map processed with a multilayer perception with four linear layers, first three
followed by a ReLU activation function. The class with the highest probability at the pixel was chosen for the map.

Variables Neural Network Class probabilities Soil type map
X m p = softmax(m(X)) Y = argmax((m(X))
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Last-layer Laplace Approximation (LA)

a Bayesian approach

Variables Neural Network Class probabilities Soil type map
X m p = softmax(m(X)) Y = argmax((m(X))
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On the weights of
the last linear layer!

Approximation of the posterior:
p(©|D) ~ N(©;Omap, L)  with X :=(V5L(D;0)|oy)"

where @p4p is the maximum a posteriori estimate of the parameters, obtained by minimizing
the negative log posterior £L(D; ©).
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Prediction of the soil type map
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(C) Our ground truth, a soil type map provided BN 19 EEE 40 (E) Certain soil types (0, 10, and 17) that are generally less related
by the LGRB Baden-Wurttemberg 20 to site conditions (e.g., Cambisol) are overestimated, especially in

areas BF and SJ. These two areas are logically poorly represented
by the MLP's choice of training areas.
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Prediction of the soil type map

performance Sharing not
permitted
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(F) Loss and accuracy of the MLP, variations in test (G) Comparison of prediction with ground truth: green
accuracy occur, due to the uneven distribution of means correct prediction of soil type. It confirms that the
soil types in training and test area areas BF and SJ are not well predicted.
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Uncertainty of the model

can we trust our results? sharing not
permitted
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(G) Comparison of prediction with ground truth: Results: SJ and BF were detected with high and low
green means correct prediction of soil type, certainty, in the southwest of the area with high
(H) probability of the class predicted by the MLP certainty up to 1 in some areas, although everywhere

calculated with the SoftMax function

the prediction of soil types is wrong
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Uncertainty before vs. after LA

detect the overconfidence St hee

permitted

applying LA &
>

(H) probability of the class predicted by the Result: The probability is now lower overall, but
MLP calculated with the SoftMax function, we get a more heterogeneous picture of the
(1) probability after applying the last-layer probability of the different classes at each point,
Laplace approximation. especially around BF and SJ. 12




Conclusion

what we can draw from it and what we need to look at further

* Investigate why the confidence in the training and test area also
decreases.

« Look at the data pixel by pixel, what is changing for each soil class.

 Leave the test case and apply it to a real area where cartographers
will also create a map.

« Comparison of pixel-based multilayer perception with multilayer
perception with context-dependent input data and convolutional
neural networks.

« Potential transferability to regions similar to, but spatially
independent of, the training area.

« Obtain new knowledge about the relationship and similarity of soil
types and their geography in different areas.
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How to get in contact with me UNIVERSITAT

Do not hesitate! TUBINGEN

Thank you for your attention!
Any gquestions?

kerstin.rau@uni-tuebingen.de
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