Insights into Aqueous Glyoxal Chemistry via Glass Transition Measurements

Introduction

Aerosols greatly influence various processes Earth's atmosphere through different direct and indirect effects. The extent of this influence, however, understood, in part because aerosol is not well properties such as the phase state are often variable and uncertain

In contrast to most inorganic species, which are know crystalline aerosol particles, aerosols to form consisting of organic compounds and their mixtures with other organic and/or inorganic species may form liquid or glassy particles.^[1]

DSC & Glass (a) - nucleation and crystallisation **D**ifferential **S**canning **C**alorimetry warming crystal **₼**₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽ Glass: Non-crystalline amorphous solid without long-range molecular order but Nucleation / melting mechanical properties of a solid.^[4] *Metastable AeRosol By Low temperature MARBLES* Evaporation of Solvent^[2,3] diffusion drying $N_2 \rightarrow =$ aerosol generation H_2O DSC analysis diffusion dryers

Advantages:

aerosol

Glass formation at room temperature

- Small probability of crystallization because of small individual airborne droplets
- Fast glass formation on the timescale of seconds

impaction flow

- No further sample preparation needed
- Study of multicomponent mixtures possible

European Geosciences Union – General Assembly 2023 Vienna, Austria | 22. – 28. April

[3] H. P. Dette, T. Koop, J. Phys. Chem. A 2015, 119, 4552. [5] T.-M. Fu, D. J. Jacob, F. Wittrock, J. P. Burrows, M. Vrekoussis, D. K. Henze, J. Geophys. Res. 2008, 113, 1. [7] A. R. Fratzke, P. J. Reilly, Int. J. Chem. Kinet. 1986, 18, 775.

	UNIVERSITÄT BIELEFELD Faculty of Chemistry Atmospheric & Physical Chemistry
Cence Sha ence	Image: state of product of the output of
	$\begin{array}{l} & \text{DR-R Spectra} \\ & Optimum of the set of th$
 Top: solution solutita soluti solution solution solution solution solution solut	ATR-IR spectra of <u>equilibrated</u> glyoxal ons (a), <u>fast</u> dried equilibrated glyoxal ons (b) and <u>slowly</u> dried glyoxal solutions in arison with the glyoxal trimer dihydrate (c) nds with maxima at lower wave numbers are e due to the equilibrium shift towards trimeric al species for higher concentrated solutions n) st dried equilibrated glyoxal solutions are similar (black and red) despite differing icantly in T_g slowly dried equilibrated glyoxal solutions uoise and orange), the trimer (purple) is pminant species
 Glyoxa and sl Equilita uptake low ter 	Conclusion al forms highly viscous particles upon fast ow drying bration time after dilution, mimicking water e in the atmosphere, is slow – especially for mperatures

[2] H. P. Dette, M. Qi, D. C. Schröder, A. Godt, T. Koop, J. Phys. Chem. A 2014, 118, 7024. [4] T. Koop, J. Bookhold, M. Shiraiwa, U. Pöschl, Phys. Chem. Chem. Phys. 2011, 13, 19238.

solution in slowly equilibrating systems