

CENTER OF APPLIED SPACE TECHNOLOGY AND MICROGRAVITY

EVALUATION OF GRACE FOLLOW-ON ACCELEROMETER TRANSPLANT BASED ON HIGH-PRECISION ENVIRONMENT MODELLING MORITZ HUCKFELDT

Vienna, 25 April 2023

Motivation

- Accelerometer data recovery through high-precision environment modelling
- Drag model limiting factor
- Solution with ZARM data and JPL ACT are comparable
- Using simulated data for both satellites leads to better gravity field solutions

Calibration for Transplant

- Calibration of JPL ACT for GRACE-C
- External calibration parameters from POD
 - Const. scale vector **s**
 - Three hourly const. bias vector **b**
 - No fitting of modelling errors

Additional calibration of cross-track and radial direction improves limitations of POD parameters

$$ACT_{cal} = \mathbf{s} \cdot ACT1B + \mathbf{b}, \ \mathbf{b} = \begin{pmatrix} pod\\ sim\\ sim \end{pmatrix} \vee \begin{pmatrix} pod\\ pod, sim\\ pod, sim \end{pmatrix}$$

Figure 1: Residuals of ACT to simulated data after POD calibration and additional simulation calibration for January 01 2019

Transplant

- Transplant procedure to decrease differences between simulated and real data
- Minimalistic approach
- Estimation of density at positions of GRACE-C and time-correction to GRACE-D positions

 $k_d = -\frac{A_{proj}C_D \|\vec{v}_{inc}\|^2}{2 m_{sat}}$ $\rho = \frac{ACT_{cal} - \Sigma \vec{a}_{rad}}{k_d},$

Only effect on along-track axis, measurement direction

data to ACH for GRACE-D for 2019

residuals in nm/s^2

Performance in GFR

- Multiple combinations
 - Calibration
 - Input models
 - **Estimation parameter**
- Ocean rms
 - Omits signal over continents and tidal signals near coasts
 - Only errors over ocean

Table 1: Ocean rms of equivalent water height with respect to mean 2019 GOCO201906s Unit is cm

estimation	input	calcal	mixcal
ρ	$NRLM$, var. C_D	5,18	5,24
	JB08, const. C _D	1 5 7	4 00
$C_D \rho$	JB08, const. C _D	4.37	4.22
	$NRLM$, var. C_D	4.44	4.58
PAGE 5	MORITZ HUCKFELDT		

Validation of Transplant

- Comparison to ITSG
- Only systematic errors
 - J2
 - Higher degrees
- Validation of our transplant procedure

Figure 5: 2019 mean degree difference of transplant to mean 2019 ITSG-operational

Comparison to other Transplants

Figure 6: 2019 mean degree difference of transplants to mean 2019 GOCO201906s

Figure 7 Top three: residuals of ZARM Transplant to ACH for 2019 Bottom two: polar and azimuth angle of Sun direction in satellite body frame for 2019

Outlook

- after transplant systematic errors dominating
 - **Radiation based**
 - **Eclipse transition**
 - Incident direction of radiation

PAGE 8 MORITZ HUCKFELDT

This work is part of the Collaborative Research Center 1464 TerraQ and funded by Deutsche Forschungsgemeinschaft DFG.

Follow us

zarm.uni-bremen.de/

PAGE 9 MORITZ HUCKFELDT

References

 Bandikova, T., McCullough, C., Kruizinga, G. L., Save, H., & Christophe, B. (2019). GRACE accelerometer data transplant. Advances in Space Research, 64(3), 623–644.

[2] Sentman, L.H. (1961). Free Molecule Flow Theory and its Application to the Determination of Aerodynamic Forces.

[3] Doornbos, E. (2010). Thermospheric Density and Wind Determination from Satellite Dynamics