

Helmholtz-Zentrum POTSDAM

Motivation and goal

- Solar wind emitted by coronal holes can damage satellites and causes billions of euros in losses
- Coronal holes can be identified in solar EUV images
- Goal: Forecasting of solar wind speed by coronal hole detection in solar images

Forecasting solar wind speed by machine learning based on coronal hole characteristics

DANIEL COLLIN^{1,2}, STEFANO BIANCO¹, GUILLERMO GALLEGO^{2,3}, YURI SHPRITS^{1,4} collin@gfz-potsdam.de

¹GFZ German Research Centre for Geosciences, Potsdam, Germany, ²Technical University of Berlin, Germany, ³Einstein Center Digital Future, Berlin, Germany, ⁴University of Potsdam, Germany

Data

- Solar wind speed, 1 h averaged (OMNIWeb)
- Solar EUV images, 193 and 211 Å, 1 h cadence, 2010/07 - 2019/12 (SDO AIA)

Evaluation

5-fold cross-validation:

- Divide data set into contiguous sections of 20 days.
- 2. Discard 4 days between each section to ensure that they are not correlated.
- 3. Assign sections sequentially to cross-validation splits.

Results:

Figure: Exemplary time frame of prediction with polynomial regression vs. observed solar wind speed.

Prediction algorithm $f(x)$	RMSE (km/s)	CC (Pearson)
Convolutional NN & LSTM	80.3	0.55
Convolutional neural network	76.3	0.57
Vision Transformer	72.2	0.63
Linear regression	74.1	0.59
Polynomial regression	74.4	0.61
Fully connected neural network	74.8	0.58
Linear regression	70.7	0.68
Polynomial regression	70.6	0.68
Fully connected neural network	70.7	0.67
	Prediction algorithm $f(x)$ Convolutional NN & LSTMConvolutional neural networkVision TransformerLinear regressionPolynomial regressionFully connected neural networkLinear regressionPolynomial regressionFully connected neural networkLinear regressionFully connected neural networkFully connected neural networkFully connected neural networkFully connected neural network	Prediction algorithm $f(x)$ RMSE (km/s)Convolutional NN & LSTM80.3Convolutional neural network76.3Vision Transformer72.2Linear regression74.1Polynomial regression74.4Fully connected neural network74.8Linear regression70.7Polynomial regression70.6Fully connected neural network70.7

Table: Comparison of our model (for different prediction algorithms f(x)) to state-of-the-art image-based models. Thick numbers: best result. ¹Space Weather, ²Solar Physics.

Model characteristics

- Simple yet informative features: Area, location of coronal holes and solar wind history capture most solar wind variations
- Feature history: Incorporation of temporal component improves prediction
- Explainability: Linear/polynomial regression is easy to interpret
- **Performance:** Our model is competitive with more complex models

Conclusion and Outlook

- The model is a simple and physically explainable but competitive forecasting tool for the solar wind emitted by coronal holes.
- However, coronal hole contours provide no information about CMEs. We plan to extend the model to capture CME effects.
- Furthermore, we want to feed images directly into a machine learning model to make use of the greater amount of information.