Modeling the partitioning of assimilated C along the soil-plant-atmosphere continuum based on a ¹³C labeling experiment

Ruth Adamczewski¹, Qiong Liu^{2,3}, Johanna Pausch², Mohsen Zarebanadkouki¹ ¹ Technical University of Munich, School of Life Sciences, Soil Biophysics and Environmental Systems, Hans-Carl-von-Carlowitz-Platz 2, 85354 Freising, Germany ² University of Bayreuth, Agroecology, 95440 Bayreuth, Bayreuth Center of Ecology and Environmental Research (BayCEER), Germany ³ State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo 315211, China Contact: ruth.adamczewski@tum.de

Motivation: How do plants regulate the partitioning of C within the soilplant-atmosphere continuum (SPAC) in atmospheric varying soil and conditions?

Challenge: direct Lack OŤ measurement of C flow through the SPAC.

Objective: To develop a new technique combining ¹³CO₂ pulse labeling with modeling of the C flow through the SPAC.

(figure created with Biorender.com)

Methods

1) Pulse labeling

- 2h pulse labeling with ¹³CO₂
- Continuous measurement of the ¹³CO₂ flux from soil
- Quantification of the ¹³C content in the shoots and roots
- 2) Modeling of C flow through SPAC
- The model domain represents the SPAC (fig. 3).
- Constant transfer rates (K) between compartments
- Neglecting leaf flow reverse and respiration
- differential ordinary system **O**[†] equations were developed to describe C flow through the SPAC
- Transfer rates are inversely adjusted to best fit measured ¹³C content and fluxes

pulse labeling setup

Fig. 1: Schematic of water and carbon cycle in the SPAC

Fig. 2: Schematic of the experimental

Fig. 3: Schematic representation of the SPAC into different compartments.

content in shoots (circles) and roots (triangles).

Pulse labeling approach combined with modeling can be a strong tool to study the partitioning of C Additional measurements of ¹³C content in shoots and roots are needed to improve the sensitivity of the model to its parameters

Fig. 5: Total sensitivity of the ¹³C flux to model parameters.

Conclusions

Fig. 6: Fitted root exudation rate for three plants.

