
1. Introduction
Electromagnetic fields are omnipresent in space. They control the motion of plasmas, and the transportation, re-
lease, and transformation of energy in space, and thereby are the key driver of space weather hazards. Charges and 
electric currents (flows of charged particles) source the electromagnetic field, and therefore the distribution and 
motions of charges determine its form. Charge separations occur in electric double layers, which exist commonly 
in space plasmas (Akasofu, 1981; Block, 1975; Raadu, 1989). Net charges can appear in plasma boundary lay-
ers (Parks, 1991), for example, the magnetopause boundary layers and Alfvén layers (Hasegawa & Sato, 1989). 
Charge separations can also occur during ambipolar diffusion processes (Alfvén & Falthammar, 1963; Bitten-
court, 2004), for example, the Earth's polar wind (Axford, 1968; Lemaire & Pierrard, 2001; Yau et  al., 2007). 
In macro-scale plasmas, flow shears or vorticities can accumulate these net charges, driving the field-aligned 
currents (Michael, 2014). Charge separations also play a key role in plasma instabilities, for example, the Ray-
leigh-Taylor instability (Michael, 2014; Treumann & Baumjohann, 1997) and the tearing instability (Treumann 
& Baumjohann, 1997).

The charge separations in space plasmas can appear at various spatial scales. The plasmas with no magnetic field 
are commonly electrically neutral when the spatial scale is much larger than the Debye length and the temporal 
scale is rather longer than the plasma oscillation time (Bittencourt, 2004). At the Debye length space scale or 
plasma oscillation time scale, the electrical neutrality would be violated and charge separations appear. On the 
other hand, the ambipolar diffusion takes place in inhomogeneous plasmas due to the different thermal velocities 
of the electrons and ions, and polarization electric fields will be created, which can span several Earth radii in the 
Earth's polar wind regions (Axford, 1968; Lemaire & Pierrard, 2001). However, due to the difference between the 
parameters of electrons and ions, the charge separations in magnetized plasmas at spatial scales much larger than 
the Debye length can occur. As for the magnetopause boundary layers, the protons of solar wind can penetrate 
more deeply into the magnetosphere than electrons because of their greater gyroradius. Therefore, the magne-
tosphere and magnetosheath sides of the magnetopause boundary layer are positively and negatively charged, 
respectively, and the width of the magnetopause boundary layer is at the order of proton gyroradius (several hun-
dred kilometers) (Hughes, 1995; Parks, 1991). During the magnetospheric substorms, the plasmas are injected 
from the magnetotail into the inner magnetosphere, and the ions and electrons are energized and drift duskward 
and dawnward, respectively. As a result, the duskside and dawnside of the inner magnetosphere accumulate 
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positive and negative charges, respectively, and a dawnward shielding electric field with a spatial scale of several 
Earth radius is established (Hasegawa & Sato, 1989).

The acquisition of a spatial distribution of electric charge density is of critical importance for recognizing and 
understanding the dynamics of electromagnetic fields and plasmas in space. However, there is still no equipment 
available for directly measuring the net charge density in space, although measurements of the charge density in 
the atmosphere near the ground have been achieved. The difficulty of such measurements in space arises because 
the plasmas there are extremely thin, with only a few charged particles per 𝐴𝐴 cm3 , and the net charge density is 
even lower by several orders. According to Harris (1962), the maximum charge density within the magnetopause 
boundary layer is 𝐴𝐴 |𝜌𝜌|max ≈ 2𝑛𝑛𝑛𝑛(1 − 𝑉𝑉 2∕𝑐𝑐2)−2𝑉𝑉 2∕𝑐𝑐2 , where n is the number density of the plasmas, V is the drifting 
velocity of electrons and ions, c is the free speed of light in vacuum. According to Lee and Kan (1979), the main 
carriers of the current in the magnetopause are ions, whose temperature is about 300  eV and thermal velocity is 
estimated to be 𝐴𝐴 𝐴𝐴 ≈ 200 𝑘𝑘𝑘𝑘∕𝑠𝑠 . Assume 𝐴𝐴 𝐴𝐴 ≈ 10 𝑐𝑐𝑐𝑐−3 in the magnetopause, then 𝐴𝐴 |𝜌𝜌|max ≈ 10 𝑒𝑒∕𝑚𝑚3 .

Cluster mission has first achieved the four-point measurements on the electric field in space (Escoubet et   
al., 2001), with which the electric field structure of the magnetopause boundary layer has been revealed (Haaland 
et  al., 2021; Paschmann et  al., 2005; and references therein). The Magnetospheric MultiScale (MMS) constella-
tion (Burch et  al., 2016) can measure the three-dimensional electric field vector at four locations in space so as to 
obtain the linear gradient of the electric field. By using this advantage, Tong et  al. (2018) have deduced the spa-
tial distribution of net charge within a magnetic hole and found there are net positive charges in the center of the 
magnetic hole and an electron sheath around the hole. With a similar approach, Argall et  al. (2019) have investi-
gated the distribution of charge density in the diffusion region of magnetic reconnection. However, we still have 
no independent charge density measurement equipment in space. In this article, we will explore how the charge 
density can be deduced based on multiple-probe electric potential measurements onboard a single spacecraft.

In Section 2, we first discuss the method for deducing the charge density from four-point electric field measure-
ments, which has been applied to analyze the charge density distribution in the dayside magnetopause boundary 
layer during an MMS magnetopause crossing event. In Section 3, a method for deducing the charge density from 
≥10 -point electric potential measurements is studied. Section 4 explores measurements of the charge density 
based on seven or eight electric potential probes. Section 5 gives a summary and some discussion.

2. Deducing the Charge Density From Multi-Spacecraft Electric Field Measurements
The direct approach to obtain the net charge density is to sum up the charge densities of positively and negatively 
charged particles with the formula

� = −� �� +
∑

�

�� ��, (1)

where 𝐴𝐴 𝐴𝐴𝑒𝑒 and 𝐴𝐴 𝐴𝐴𝑖𝑖 are the densities of the electrons and the ith ion, respectively, and 𝐴𝐴 𝐴𝐴𝑖𝑖 is the charge of the ith ion. 
However, the electric force is so strong that the plasmas are always quasi-neutral, and the separation between 
the two types of charges is very slight. Therefore, the charge densities in space plasmas are extremely small. It 
is almost impossible to determine the net charge density by measuring the densities of charged particles at the 
present stage of space exploration.

The most feasible and practicable method at present is to deduce the net charge density by measuring the elec-
tric potentials or electric fields created by the net charges at high accuracies with well-developed technolo-
gy (Michael,  2014; Mozer & Bruston, 1967; Mozer,  1973; Paschmann et   al.,  1997; Pedersen et   al.,  1998). 
The Spin-plane Double Probes (SDPs) and Axial Double Probes (ADPs) (Torbert et   al.,  2016; Lindqvist et   
al., 2016; Ergun et  al., 2016) onboard the four spacecraft of the MMS constellation (Burch et  al., 2016) yield 
four electric field vectors at four different locations separated by tens of kilometers. With the Gaussian theorem, 

𝐴𝐴 𝐴𝐴 = 𝜀𝜀0∇ ⋅ 𝐄𝐄 , we can get the charge density at the center of the constellation, as illustrated in Figure 1. Suppose 
that the four spacecrafts of the MMS constellation are located at four different positions 𝐴𝐴 𝐫𝐫𝛼𝛼 (𝛼𝛼 = 1, 2, ⋅ ⋅ ⋅, 4) . 

The barycenter of the MMS constellation is 𝐴𝐴 𝐫𝐫𝑐𝑐 ≡ 1
4

4
∑

𝛼𝛼=1
𝐫𝐫𝛼𝛼 . It is convenient to assume that 𝐴𝐴 𝐫𝐫𝑐𝑐 = 0 , so that the bary-

center of the constellation is the origin of the frame of reference. The four spacecraft yield four electric fields, 
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𝐴𝐴 𝐄𝐄𝛼𝛼 = 𝐄𝐄(𝐫𝐫𝛼𝛼), 𝛼𝛼 = 1, 2, ⋅ ⋅ ⋅, 4 . Under the linear assumption, the ith component 
of the gradient of the electric field at the barycenter can be calculated as 
(Chanteur, 1998; Harvey, 1998)

(∇i𝐄𝐄)c =
1
4

4
∑

𝛼𝛼=1

𝐄𝐄𝛼𝛼r𝛼𝛼𝛼𝛼𝑅𝑅−1
ji , (2)

where 𝐴𝐴 𝐴𝐴𝑖𝑖𝑖𝑖 = 1
4

4
∑

𝛼𝛼=1
𝑟𝑟𝛼𝛼𝑖𝑖𝑟𝑟𝛼𝛼𝑖𝑖 is the volumetric tensor of the constellation (Har-

vey, 1998), and 𝐴𝐴 𝐴𝐴−1
ji  its inverse. By using the Gaussian theorem, we can get 

the charge density with the divergence of the electric field vector, that is,

𝜌𝜌 = 𝜀𝜀0∇ ⋅ 𝐄𝐄 = 𝜀𝜀0
3
∑

𝑖𝑖=1

∇𝑖𝑖𝐸𝐸𝑖𝑖, (3)

The accuracy of the axial electric field measured by MMS is 1 𝐴𝐴 𝐴𝐴𝐴𝐴 ∕𝐴𝐴 
(ADPs, Ergun et  al., 2016), while the accuracy of the components of elec-
tric field in the spin plane is   <0.5 𝐴𝐴 mV∕m (SDPs, Lindqvist et   al., 2016). 
The two corresponding errors can be denoted as 𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴 ∼ 1 mV∕m and 

𝐴𝐴 𝐴𝐴𝐴𝐴𝑆𝑆 ∼ 0.5 mV∕m , respectively. It is known that the characteristic spatial 
scale of MMS is 𝐴𝐴 𝐴𝐴 ≈ 20 𝑘𝑘𝑘𝑘 . Therefore, the error of the charge density cal-
culated from the MMS four-point electric measurements is estimated to be 

𝐴𝐴 𝐴𝐴𝐴𝐴 ≈ 𝜀𝜀0( 𝐴𝐴𝛿𝛿𝐴𝐴
𝐿𝐿

+ 2 𝐴𝐴𝛿𝛿𝑆𝑆
𝐿𝐿
) ≈ 0.45 e∕m3 which, as we will see in a case study, is 

much smaller than the observed charge density. The algorithm presented here 
is also evaluated and validated by a more sophisticated simulation shown in 
Figures S1 and S2.

Here we will explore the net charge distribution within the magnetopause 
boundary layer based on MMS electric measurements. It is well known that 

a charge separation occurs in the magnetopause, brought about by the effects of inertia (because there is a large 
difference between the masses of the electrons and ions). As a result of that, the net positive charges accumulate at 
the magnetospheric side and the net negative charges accumulate at the magnetosheath side of the magnetopause 
boundary. Because the MMS constellation has a rather small size (with the spacecraft separations being several 
tens of kilometers) and can be well-embedded in the magnetopause boundary, the charge density can be deduced 
from the MMS electric observations using the above method. We investigated one MMS magnetopause crossing 
event at 14:26:14 on November 11, 2015 by examining the electric field and calculating the charge density, whose 
values during the crossing event are shown in Figure 2. It can be seen that the rotational discontinuity (RD) appear 
at UT14:26:40 with the maximum magnetic rotation rates (panel (d)) (C. Shen et   al., 2007), minimum value 
of the gradient of the magnetic strength (panel (e)), and smallest radius of curvature of the magnetic field lines 
(panel (f)). As shown in panel (g), a charge separation is evident within the magnetopause boundary, with the 
positive charges at the magnetospheric side and negative charges at the magnetosheath side. The maximum value 
of the charge density in the magnetopause is about 60𝐴𝐴 e∕m3 , which is much larger than the error (𝐴𝐴 𝐴𝐴𝐴𝐴 ≈ 0.45 e∕m3 ) 
as given above. It is evident that the electric neutrality is kept in the magnetosheath near to the magnetopause. 
These results are in agreement with the conventional kinetic models of the magnetopause boundary layers (Har-
ris, 1962; Hughes, 1995; Lee & Kan, 1979; Parks, 1991).

3. Charge Density Measurements From 10 Probes on Board a Spacecraft-Stiff Booms 
Method
It is known that the linear gradient of a quantity can be estimated based on four-point measurements (Chan-
teur, 1998; Harvey, 1998; C. Shen et   al., 2003), while the quadratic gradient of a quantity can be calculated 
based on 10-point measurements (Chanteur, 1998). In the low Earth Orbit missions DEMETER (Berthelier et  
al., 2005) and Zhangheng-1 (X. H. Shen et  al., 2018), the electric field is measured with four probes mounted 
at the ends of four stiff booms. We suggest to construct an electric equipment composed of 10 or more electric 
probes so that both the electric field and charge density can be measured. In a previous investigation (C. Shen 

Figure 1. A schematic view of the measurements of the electric field by the 
MMS constellation and the calculation of the charge density.
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et  al., 2021), a new algorithm was put forward to calculate the linear and quadratic gradients jointly based on 10 
or more measurements. It can be applied to obtain the quadratic gradients (𝐴𝐴 ∇2𝜑𝜑 ) from 10-point electric potential 
field (𝐴𝐴 𝐴𝐴 ) measurements. Moreover, with the Poisson equation,

𝜌𝜌 = −𝜀𝜀0∇2𝜑𝜑𝜑 (4)

it yields the distribution of the electric charge density. For the processes with temporal variations, the general 
governing equation is the d'Alembert equation, 𝐴𝐴 -𝑐𝑐−2𝜕𝜕2𝑡𝑡 𝜑𝜑 + ∇2𝜑𝜑 = −𝜀𝜀0−1𝜌𝜌 , instead. However, for slow varying 
structures or steady structures and low-frequency plasma waves with their motion speeds much less than c, the 
first term at the right-hand side of the d'Alembert equation can be neglected.

Figure 2. The structure of the magnetopause during an MMS crossing event on November 11, 2015. From top to bottom: 
(a) the magnetic flux density at the center of the constellation, (b) the electric field at the center of the constellation, (c) the 
electron and ion number densities measured by MMS-1 (Pollock et  al., 2016), (d) the rotation rates of the magnetic field (C. 
Shen et  al., 2007), (e) 𝐴𝐴 |∇|𝑩𝑩|| , (f) the radius of curvature of the magnetic field lines (C. Shen et  al., 2003), and (g) the charge 
distribution. The red vertical line marks the largest rotation rates, and the black vertical dotted lines mark the largest and the 
smallest charge densities.
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We can check the feasibility of this 10-probe scheme. The electric field gen-
erated by a uniformly charged ball will be used to test this approach. Sup-
posing that the radius of the ball is 𝐴𝐴 𝐴𝐴0 and its charge density is 𝐴𝐴 𝐴𝐴 , we get the 
electric potential field analytically as,

𝜑𝜑(𝐫𝐫) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

−1
6
𝜀𝜀−1𝜌𝜌𝜌𝜌2 + 1

2𝜀𝜀
𝜌𝜌20𝜌𝜌 𝜌𝜌𝜌𝜌 𝜌𝜌 ≤ 𝜌𝜌0,

− 1
4𝜋𝜋𝜀𝜀

𝑄𝑄
𝜌𝜌

𝜌𝜌𝜌𝜌 𝜌𝜌 𝑖 𝜌𝜌0,

 (5)

where 𝐴𝐴 𝐴𝐴 = 4
3
𝜋𝜋𝜋𝜋03𝜌𝜌 is the total charge and 𝐴𝐴 𝐴𝐴 is the distance from the center of 

the ball to the measurement point. In the following modeling, constant values 
of 1 are assigned to 𝐴𝐴 𝐴𝐴𝐴 𝐴𝐴 𝐴𝐴0, and 𝐴𝐴 𝐴𝐴 , that is, 𝐴𝐴 𝐴𝐴 = 𝑟𝑟0 = 𝜖𝜖 = 1 . The positions of the 10 
probes in the barycenter coordinates are generated randomly and presented 
in Tab. 1 and Figure 3. The three characteristic lengths of the distribution of 
the 10 probes (Harvey, 1998; Robert et  al., 1998) are 𝐴𝐴 𝐴𝐴 = 0.10, 𝐴𝐴 𝐴𝐴 = 0.06, and 

𝐴𝐴 𝐴𝐴 = 0.03 . The reconstructed characteristic matrix 𝐴𝐴 ℜ𝑀𝑀𝑀𝑀 is

(ℜ�� ) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

12.73 −11.09 −5.05 5.22 2.74 1.61

−11.09 20.90 5.47 −6.71 −4.97 −2.28

−5.05 5.47 6.44 −2.49 −4.56 −2.27

5.22 −6.71 −2.49 12.83 −1.91 2.27

2.74 −4.97 −4.56 −1.91 9.09 0.86

1.61 −2.28 −2.27 2.27 0.86 2.68

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

10−3, (6)

and its eigenvalues are given in Table 2.

We first investigate the behavior of the resultants with the number of iterations. 𝐴𝐴 𝐴𝐴 is the local characteristic scale 
of the electric field structure and is set equal to 𝐴𝐴 𝐴𝐴 in this model. It is assumed that the barycenter of the constella-
tion is at 𝐴𝐴 [0.1, 0, 0] , and the probe separations 𝐴𝐴 𝐴𝐴 are reduced proportionally so that the relative measurement scale 
L/D 𝐴𝐴 = 0.026 . The relative truncation error, 𝐴𝐴 𝐴𝐴𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎∕𝐴𝐴𝑎𝑎𝑟𝑟𝑎𝑎𝑎𝑎 − 1 , is shown in Figure 4. With increasing numbers 
of iterations, the errors decrease and finally converge to certain fixed values. In this calculation, the solution 

x y z

−0.16474 0.520923 −0.07516

−0.29774 −0.2433 −0.00151

0.107263 −0.00029 0.243785

−0.12458 −0.14707 0.116693

−0.11324 0.080113 −0.22108

0.505285 −0.29726 −0.0293

0.055479 0.300437 −0.28976

0.461577 −0.14647 −0.13865

−0.2916 0.323618 0.339179

−0.13771 −0.3907 0.055801

Table 1 
The Locations of the 10 Probes in the Barycenter Coordinates

Figure 3. The distribution of the 10 probes.
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converges after 100 iterations. By testing various fields, we found that the 
number of iterations required for convergence varies.

Secondly, we investigate the dependence of the truncation errors on the rel-
ative measurement scale L/D. We have tested six situations, with the bary-
center of the 10 probes located at three representative points within the ball, 

𝐴𝐴 [0.1, 0, 0], 𝐴𝐴 [0.4, 0, 0], and 𝐴𝐴 [0.7, 0, 0] , and three points outside the ball, 𝐴𝐴 [3, 0, 0], 
𝐴𝐴 [5, 0, 0], and 𝐴𝐴 [8, 0, 0] . We scale up and down the size of the original 10 probes to adjust the characteristic size 𝐴𝐴 𝐴𝐴 

and therefore 𝐴𝐴 𝐴𝐴∕𝐷𝐷 .

Figure 5 shows the errors modeled in the ball. In general, the errors are less than 𝐴𝐴 10−5% for the linear gradients 
and less than 𝐴𝐴 0.02% for the quadratic gradients. With the same number of iterations, 1,000, the errors at different 
positions vary by order of 2. The extremely accurate results arise from the fact that the charge density has been 
assumed homogeneous and electric field is linear varying within the charged ball.

Figure 6 shows the modeling results outside of the ball. As L/D  <  0.01, the relative errors of the non-vanishing 
quadratic gradient components are below 2%. The attained linear and quadratic gradients are accurate to second 
order and first order, respectively.

The same error analysis procedure for the 10-probe scheme has been applied to another charged ball model in 
which the charge density is inversely proportional to the square of the distance from the ball center, as shown in 
Figures S3 and S4, and a similar conclusion has been reached.

We further investigate the relationship between the accuracy of the density estimated and the number of probes 
used. Figure 7 indicates that the accuracy of the charge density is not improved significantly as the number of 
probes is increased. Therefore, 10 probes with a proper spatial configuration will be sufficient for robust meas-
urements of the charge density.

This scheme is possible to be used for the net charge measurements on the low Earth orbits at the altitudes of 
several hundred kms, for which the 10 probes are mounted at the ends of 10 booms with different lengths, and the 
spacecraft can be either spinning or not.

The feasibility of the measurements at the low attitude Earth orbits can be shown by including observational 
errors. The accuracy of the probes is assumed at 𝐴𝐴 𝐴𝐴𝐴𝐴 ≈ 𝐿𝐿𝐴𝐴∇𝐴𝐴 ∼ 10 m × 0.5mV

m
∼ 5 mV . The electric potential at 

an arbitrary probe can be expanded as the following.

0.03614 0.01326 0.00114 0.00235 0.00510 0.00668

Table 2 
The Eigenvalues of the Characteristic Matrix 𝐴𝐴 ℜ𝑀𝑀𝑀𝑀

Figure 4. The relative errors of the linear (a) and the quadratic (b) electric potential gradients, that is, 𝐴𝐴 𝐴𝐴𝑥𝑥𝜙𝜙 and 𝐴𝐴 𝐴𝐴𝑥𝑥𝐴𝐴𝑥𝑥𝜙𝜙 , 
calculated for different numbers of iterations at 𝐴𝐴 [0.1, 0, 0] within the uniformly charged ball.
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Figure 5. The variation of the errors of the calculation by using the 10-probe scheme with the relative measurement scale 
L/D for the case of a uniformly charged ball. The measurements are performed inside of the charged ball. The left panels, (a), 
(c), and (e), show the truncation errors for the non-vanishing component of the linear gradient by 𝐴𝐴 𝐴𝐴∕𝐷𝐷 calculated for three 
different locations of the barycenter of the 10 probes inside the ball, 𝐴𝐴 [0.1, 0, 0], 𝐴𝐴 [0.4, 0, 0], and 𝐴𝐴 [0.7, 0, 0] . The right panels, (b), 
(d), and (f), illustrate the relative errors of the non-vanishing components of the quadratic gradient and charge density (dashed 
line) calculated for the same three locations of the barycenter. It is noted that 𝐴𝐴 𝐴𝐴,1 ≡ 𝜕𝜕𝑥𝑥𝐴𝐴 and 𝐴𝐴 𝐴𝐴,2,2 ≡ 𝜕𝜕𝑦𝑦𝜕𝜕𝑦𝑦𝐴𝐴 , where a comma 
denotes partial differentiation.
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Figure 6. The dependence of the truncation errors of the calculations by using the 10-probe scheme on the relative 
measurement scale L/D for the case of a uniformly charged ball. The measurements are performed outside of the charged 
ball. The left panels, (a), (c), and (e), show the truncation error for the non-vanishing component of the linear gradient as a 
function of 𝐴𝐴 𝐴𝐴∕𝐷𝐷 calculated for three different locations of the barycenter of the 10 probes outside of the ball, 𝐴𝐴 [3, 0, 0], 𝐴𝐴 [5, 0, 0], 
and 𝐴𝐴 [8, 0, 0] . The right panels, (b), (d), and (f), illustrate the relative errors of the non-vanishing components of the quadratic 
gradient and the absolute value of the charge density (dashed line) calculated for the same three locations of the barycenter. It 
is noted that the real charge density outside of the ball is zero.
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𝜙𝜙 = 𝜙𝜙𝑐𝑐 + Δ𝐱𝐱 ⋅ ∇𝜙𝜙 + 1
2
Δ𝐱𝐱 Δ𝐱𝐱 ⋅ ∇∇𝜙𝜙

∼ 𝜙𝜙𝑐𝑐 − 𝐸𝐸 ⋅ 𝐿𝐿 + 1
2
1
𝜀𝜀0
𝜌𝜌 𝐿𝐿2,

 (7)

where 𝐴𝐴 Δ𝐱𝐱 is the distance of the probe from the center, which is at the scale of L; 𝐴𝐴 ∇𝜙𝜙 = −𝐄𝐄 , and 𝐴𝐴 ∇∇𝜙𝜙 is estimat-
ed by 𝐴𝐴 ∇2𝜑𝜑 = −𝜌𝜌∕𝜀𝜀0 . The second term at the right-hand side (or the first-order term) is the contribution of the 
electric field, which is about 𝐴𝐴 𝐴𝐴𝐴𝐴 ∼ 600mV

m
× 10 m ∼ 6.0 V . The third term (or the second-order term) is the 

contribution of the charge density, which is about 𝐴𝐴 1
2

1
𝜀𝜀0
𝜌𝜌 𝜌𝜌2 ∼ 50 mV if the typical value of the charge density at 

low Earth orbits is assumed to be 𝐴𝐴 𝐴𝐴 ∼ 5 × 104𝑒𝑒∕𝑚𝑚3 , which is about three order higher than those at the high Earth 
orbits. They are both much larger than the probe sensitivity (𝐴𝐴 5𝑚𝑚𝑚𝑚  ), so that at low Earth orbits the charge density 
is observable with the approach described above.

4. Measuring the Charge Density With Seven or Eight Electric Potential Probes
Only three diagonal components of the quadratic gradient of the electric potential are contained in the Poisson 
equation (𝐴𝐴 𝐴𝐴 ∝ ∇2𝜙𝜙 = 𝜕𝜕2

𝜕𝜕𝜕𝜕2
𝜙𝜙 + 𝜕𝜕2

𝜕𝜕𝜕𝜕2
𝜙𝜙 + 𝜕𝜕2

𝜕𝜕𝜕𝜕2
𝜙𝜙 ). The three other cross-components of the quadratic gradient, 𝐴𝐴 𝐴𝐴𝑥𝑥𝐴𝐴𝑦𝑦𝜙𝜙 , 

𝐴𝐴 𝐴𝐴𝑦𝑦𝐴𝐴𝑧𝑧𝜙𝜙, and 𝐴𝐴 𝐴𝐴𝑧𝑧𝐴𝐴𝑥𝑥𝜙𝜙 , are of no use for computing the charge density, so three independent parameters can be ne-
glected in this algorithm. Therefore, 10−3  =  7 probes are sufficient to acquire the data for the estimation of the 
Laplacian operator on the electric potential (𝐴𝐴 ∇2𝜙𝜙 ) as well as the charge density.

4.1. Seven-Probe Scheme

A seven-probe scheme, which is similar to the electric potential measurement of the MMS at high altitude or-
bits, is shown in Figure 8. All probes are placed on three axes of the Cartesian coordinate system. The spatial 
parameters are 𝐴𝐴 𝐴𝐴2 = −𝐴𝐴1 = 𝐿𝐿𝐴𝐴 , 𝐴𝐴 𝐴𝐴2 = −𝐴𝐴1 = 𝐿𝐿𝐴𝐴 , and 𝐴𝐴 𝐴𝐴2 = −𝐴𝐴1 = 𝐿𝐿𝐴𝐴 . By taking differences, the linear and quadrat-
ic gradients at second-order accuracy can be obtained to estimate the charge density at the center.

The linear and quadratic gradients along the x-axis are

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝜕𝜕𝑥𝑥𝜙𝜙 =
𝜙𝜙x2 − 𝜙𝜙x1

2𝐿𝐿𝑥𝑥

𝜕𝜕2𝑥𝑥𝜙𝜙 =

𝜙𝜙x2 − 𝜙𝜙0

𝐿𝐿𝑥𝑥
−

𝜙𝜙0 − 𝜙𝜙x1

𝐿𝐿𝑥𝑥

𝐿𝐿𝑥𝑥
=

(𝜙𝜙x2 + 𝜙𝜙x1) − 2𝜙𝜙0

𝐿𝐿𝑥𝑥
2

 (8)

Figure 7. The relation between the absolute error of the charge density and the number of measurement points at 𝐴𝐴 [3, 0, 0] . 
The relative measurement scale is chosen as 𝐴𝐴 𝐴𝐴∕𝐷𝐷 = 0.05 (left) and 𝐴𝐴 𝐴𝐴∕𝐷𝐷 = 0.01 (right). The dashed lines are fitted from the 
modeled errors.
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Similarly, the linear and quadratic gradients along the y-axis are

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜕𝜕y𝜙𝜙 =
𝜙𝜙y2 − 𝜙𝜙y1

2𝐿𝐿𝑦𝑦

𝜕𝜕2𝑦𝑦𝜙𝜙 =
(𝜙𝜙y2 + 𝜙𝜙y1) − 2𝜙𝜙0

𝐿𝐿2
𝑦𝑦

 (9)

The linear and quadratic gradients along the z-axis are

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜕𝜕z𝜙𝜙 =
𝜙𝜙z2 − 𝜙𝜙z1

2𝐿𝐿𝑧𝑧

𝜕𝜕2𝑧𝑧𝜙𝜙 =
(𝜙𝜙z2 + 𝜙𝜙z1) − 2𝜙𝜙0

𝐿𝐿2
𝑧𝑧

 (10)

The linear and quadratic gradients are both accurate to second order.

However, in actual measurements, the central probe is inside the spacecraft and cannot determine the electric 
potential accurately. To improve this measurement, the central probe is replaced by another two additional probes 
located on the z-axis. The algorithm for this is shown in the following section. It is noted the seven-probe scheme 
can be still applied to the electric field and charge density measurements in ground-based laboratory experiments.

Figure 8. A schematic view of the seven-probe measurement of the charge density. The probes are indicated by black dots.
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4.2. Eight-Probe Scheme

The eight-probe scheme is shown in Figure  9 with 𝐴𝐴 𝐴𝐴2 = −𝐴𝐴1 = 𝐿𝐿𝐴𝐴 , 𝐴𝐴 𝐴𝐴2 = −𝐴𝐴1 = 𝐿𝐿𝐴𝐴 , 𝐴𝐴 𝐴𝐴3 = −𝐴𝐴2 = 𝐿𝐿𝐴𝐴 , and 
𝐴𝐴 𝐴𝐴4 = −𝐴𝐴1 = 𝐿𝐿𝐴𝐴 + 𝑙𝑙𝐴𝐴 . The algorithm is constructed as follows.

The four electric potentials observed by the probes on the z-axis can be expressed as a Taylor series. By keeping 
the first five terms we get

{

𝜙𝜙z1 = 𝜙𝜙0 + 𝑧𝑧1𝜕𝜕𝑧𝑧𝜙𝜙 + 1
2
𝑧𝑧12𝜕𝜕𝑧𝑧2𝜙𝜙 + 1

3!
𝑧𝑧13𝜕𝜕𝑧𝑧3𝜙𝜙 + 1

4!
𝑧𝑧14𝜕𝜕𝑧𝑧4𝜙𝜙 (11)

{

𝜙𝜙z2 = 𝜙𝜙0 + 𝑧𝑧2𝜕𝜕𝑧𝑧𝜙𝜙 + 1
2
𝑧𝑧22𝜕𝜕𝑧𝑧2𝜙𝜙 + 1

3!
𝑧𝑧23𝜕𝜕𝑧𝑧3𝜙𝜙 + 1

4!
𝑧𝑧24𝜕𝜕𝑧𝑧4𝜙𝜙 (12)

{

𝜙𝜙z3 = 𝜙𝜙0 + 𝑧𝑧3𝜕𝜕𝑧𝑧𝜙𝜙 + 1
2
𝑧𝑧32𝜕𝜕𝑧𝑧2𝜙𝜙 + 1

3!
𝑧𝑧33𝜕𝜕𝑧𝑧3𝜙𝜙 + 1

4!
𝑧𝑧34𝜕𝜕𝑧𝑧4𝜙𝜙 (13)

{

𝜙𝜙z4 = 𝜙𝜙0 + 𝑧𝑧4𝜕𝜕𝑧𝑧𝜙𝜙 + 1
2
𝑧𝑧42𝜕𝜕𝑧𝑧2𝜙𝜙 + 1

3!
𝑧𝑧43𝜕𝜕𝑧𝑧3𝜙𝜙 + 1

4!
𝑧𝑧44𝜕𝜕𝑧𝑧4𝜙𝜙 (14)

Summing up the above four equations leads to

(𝜙𝜙z1 + 𝜙𝜙z2 + 𝜙𝜙z3 + 𝜙𝜙z4) = 4𝜙𝜙0 +
1
2
(𝑧𝑧21 + 𝑧𝑧22 + 𝑧𝑧23 + 𝑧𝑧24)𝜕𝜕𝑧𝑧

2𝜙𝜙 + 1
4!
(𝑧𝑧41 + 𝑧𝑧42 + 𝑧𝑧43 + 𝑧𝑧44)𝜕𝜕𝑧𝑧

4𝜙𝜙 (15)

Figure 9. A schematic view of the eight-probe measurement of charge density.
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The electric potential at the center is therefore

𝜙𝜙0 =
1
4
(𝜙𝜙z1 + 𝜙𝜙z2 + 𝜙𝜙z3 + 𝜙𝜙z4) −

1
8
(𝑧𝑧21 + 𝑧𝑧22 + 𝑧𝑧23 + 𝑧𝑧24)𝜕𝜕𝑧𝑧

2𝜙𝜙 − 1
96

(𝑧𝑧41 + 𝑧𝑧42 + 𝑧𝑧43 + 𝑧𝑧44)𝜕𝜕𝑧𝑧
4𝜙𝜙 (16)

Subtracting Equation 11 from Equation 14 and Equation 12 from Equation 13 gives

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜙𝜙z4 − 𝜙𝜙z1 = (𝑧𝑧4 − 𝑧𝑧1)𝜕𝜕𝑧𝑧𝜙𝜙 + 1
3!
(𝑧𝑧43 − 𝑧𝑧13)𝜕𝜕𝑧𝑧3𝜙𝜙

𝜙𝜙z3 − 𝜙𝜙z2 = (𝑧𝑧3 − 𝑧𝑧2)𝜕𝜕𝑧𝑧𝜙𝜙 + 1
3!
(𝑧𝑧33 − 𝑧𝑧23)𝜕𝜕𝑧𝑧3𝜙𝜙

 (17)

or

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜙𝜙z4 − 𝜙𝜙z1 = 2𝑧𝑧4𝜕𝜕𝑧𝑧𝜙𝜙 + 1
3
𝑧𝑧43𝜕𝜕𝑧𝑧3𝜙𝜙

𝜙𝜙z3 − 𝜙𝜙z2 = 2𝑧𝑧3𝜕𝜕𝑧𝑧𝜙𝜙 + 1
3
𝑧𝑧33𝜕𝜕𝑧𝑧3𝜙𝜙

 (18)

Then, we get the linear gradient along the z-axis at the center as

𝜕𝜕𝑧𝑧𝜙𝜙 =
𝑧𝑧33(𝜙𝜙z4 − 𝜙𝜙z1) − 𝑧𝑧43(𝜙𝜙z3 − 𝜙𝜙z2)

2𝑧𝑧4𝑧𝑧33 − 2𝑧𝑧3𝑧𝑧43
 (19)

The expression above is of fourth-order accuracy. On the other hand, from Equation 17, the third-order derivative 
of electric potential along the z-axis is

𝜕𝜕𝑧𝑧3𝜙𝜙 =
3𝑧𝑧3(𝜙𝜙z4 − 𝜙𝜙z1) − 3𝑧𝑧4(𝜙𝜙z3 − 𝜙𝜙z2)

𝑧𝑧3𝑧𝑧43 − 𝑧𝑧4𝑧𝑧33
 (20)

The expression above is of second-order accuracy.

Subtracting the sum of Equation 12 and Equation 13 from the sum of Equation 11 and Equation 14, we get

(𝜙𝜙z4 + 𝜙𝜙z1) − (𝜙𝜙z3 + 𝜙𝜙z2) =
1
2
(𝑧𝑧12 + 𝑧𝑧42 − 𝑧𝑧22 − 𝑧𝑧32)𝜕𝜕𝑧𝑧2𝜙𝜙 + 1

4!
(𝑧𝑧14 + 𝑧𝑧44 − 𝑧𝑧24 − 𝑧𝑧34)𝜕𝜕𝑧𝑧4𝜙𝜙 (21)

The second-order derivative is, therefore,

𝜕𝜕𝑧𝑧2𝜙𝜙 =
2(𝜙𝜙z4 + 𝜙𝜙z1 − 𝜙𝜙z3 − 𝜙𝜙z2)
(𝑧𝑧12 + 𝑧𝑧42 − 𝑧𝑧22 − 𝑧𝑧32)

− 1
12

(𝑧𝑧14 + 𝑧𝑧44 − 𝑧𝑧24 − 𝑧𝑧34)
𝑧𝑧12 + 𝑧𝑧42 − 𝑧𝑧22 − 𝑧𝑧32

𝜕𝜕𝑧𝑧4𝜙𝜙 (22)

The expression above is of second-order accuracy.

Substituting Equation 22 into Equation 16, we get the corrected potential 𝐴𝐴 𝐴𝐴0 at the center as

𝜙𝜙0 =
1
4
(𝜙𝜙z1 + 𝜙𝜙z2 + 𝜙𝜙z3 + 𝜙𝜙z4) −

1
4

𝑧𝑧21 + 𝑧𝑧22
𝑧𝑧12 − 𝑧𝑧22

(𝜙𝜙z4 + 𝜙𝜙z1 − 𝜙𝜙z3 − 𝜙𝜙z2) +
1
24

𝑧𝑧21𝑧𝑧
2
2𝜕𝜕𝑧𝑧

4𝜙𝜙 (23)

The above expression is of fourth-order accuracy because the expression is truncated at the fourth-order term.

Furthermore, by neglecting high order terms, we get the estimators for the potential and its linear and quadratic 
gradients at the center as

{

𝜕𝜕𝑧𝑧2𝜙𝜙 =
(𝜙𝜙z4 + 𝜙𝜙z1) − (𝜙𝜙z3 + 𝜙𝜙z2)

𝑙𝑙𝑧𝑧(2𝐿𝐿𝑧𝑧 + 𝑙𝑙𝑧𝑧)
 (24)

{

𝜕𝜕𝑧𝑧𝜙𝜙 =
(𝐿𝐿𝑧𝑧 + 𝑙𝑙𝑧𝑧)3(𝜙𝜙z3 − 𝜙𝜙z2) − 𝐿𝐿𝑧𝑧

3(𝜙𝜙z4 − 𝜙𝜙z1)
2𝐿𝐿𝑧𝑧(𝐿𝐿𝑧𝑧 + 𝑙𝑙𝑧𝑧)(2𝑙𝑙𝑧𝑧𝐿𝐿𝑧𝑧 + 𝑙𝑙𝑧𝑧2)

 (25)
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{

𝜙𝜙0 =
1
4
(𝜙𝜙z1 + 𝜙𝜙z2 + 𝜙𝜙z3 + 𝜙𝜙z4) −

(𝐿𝐿𝑧𝑧 + 𝑙𝑙𝑧𝑧)2 + 𝐿𝐿2
𝑧𝑧

4𝑙𝑙𝑧𝑧(2𝐿𝐿𝑧𝑧 + 𝑙𝑙𝑧𝑧)
(𝜙𝜙z4 + 𝜙𝜙z1 − 𝜙𝜙z3 − 𝜙𝜙z2) (26)

As stated above, the second-order derivative along the z-axis is of second-order accuracy. The potential and its 
first-order derivative along the z-axis are of fourth-order accuracy.

Similar to the seven-probe scheme, the first-order and second-order derivatives of the potential along the x-axis 
and y-axis are subjected to Equations 8 and 9. The central potential 𝐴𝐴 𝐴𝐴0 is calculated with Equation 26. The first-or-
der and second-order derivatives along the x-axis and y-axis are of second-order accuracy.

The electric field at the center is

𝐄𝐄 = −�̂�𝐞𝑥𝑥𝜕𝜕𝑥𝑥𝜙𝜙 − �̂�𝐞y𝜕𝜕𝑦𝑦𝜙𝜙 − �̂�𝐞𝑧𝑧𝜕𝜕𝑧𝑧𝜙𝜙 (27)

Using the Poisson Equation 4, the charge density is obtained as

𝜌𝜌 = −𝜀𝜀0(𝜕𝜕𝑥𝑥2𝜙𝜙 + 𝜕𝜕𝑦𝑦2𝜙𝜙 + 𝜕𝜕𝑧𝑧2𝜙𝜙)

= −𝜀𝜀0
[

(𝜙𝜙x2 + 𝜙𝜙x1) − 2𝜙𝜙0

𝐿𝐿2
𝑥𝑥

+
(𝜙𝜙y2 + 𝜙𝜙y1) − 2𝜙𝜙0

𝐿𝐿2
𝑦𝑦

+
(𝜙𝜙z4 + 𝜙𝜙z1) − (𝜙𝜙z3 + 𝜙𝜙z2)

𝑙𝑙𝑧𝑧(2𝐿𝐿𝑧𝑧 + 𝑙𝑙𝑧𝑧)

] (28)

where 𝐴𝐴 𝐴𝐴0 is given by Equation 26.

The eight-probe scheme will now be examined for the electric field produced by a uniformly charged ball.

The relationship between the relative truncation errors and the relative measurement scale, 𝐴𝐴 𝐴𝐴∕𝐷𝐷 , is studied when 
we set 𝐴𝐴 𝐴𝐴𝑥𝑥 = 𝐴𝐴𝑦𝑦 = 𝐴𝐴𝑧𝑧 = 𝑙𝑙𝑧𝑧 and scale up and down the distances between the spacecraft to adjust 𝐴𝐴 𝐴𝐴∕𝐷𝐷 . Due to the 
broken spherical symmetry, two points inside the ball, 𝐴𝐴 [0.5, 0, 0] and 𝐴𝐴 [0.5, 0.4, 0.3] , and two points outside of the 
ball, 𝐴𝐴 [8, 0, 0] and 𝐴𝐴 [2, 2, 6] , are chosen as the representative points. The modeled results are shown in Figure 10. The 
quadratic gradient in the ball is close to a constant and the charge density here is a constant. The truncation errors 
given by the algorithm, as shown in Figures 10a and 10b, are negligible in this case. The charge density outside 
the ball is zero, and the calculated density, amounting to 𝐴𝐴 10−4 as shown by the dashed lines in Figures 10c and 10d, 
is fairly close to zero. Note that the scale is one in the modeled system. As 𝐴𝐴 𝐴𝐴∕𝐷𝐷 𝐷 0.1 , the truncation errors of the 
quadratic gradient are less than 𝐴𝐴 2% . It can be seen that the relative errors of the quadratic gradient and hence the 
charge density are at second order in L/D.

For real measurements in space, the distances between the probes along the z-axis, 𝐴𝐴 𝐴𝐴𝑧𝑧 and 𝐴𝐴 𝐴𝐴𝑧𝑧 , are much smaller 
than those along the other axes, 𝐴𝐴 𝐴𝐴𝑥𝑥 and 𝐴𝐴 𝐴𝐴𝑦𝑦 . The truncation error in real case, therefore, should be less than eval-
uated when setting them all equal.

An error analysis on the eight-probe scheme using the charged ball model of 𝐴𝐴 𝐴𝐴 = 𝑏𝑏∕𝑟𝑟2 is also conducted. The 
result as shown in Figure S5 have further confirmed the accuracy of this algorithm. This eight probe scheme is 
potentially applied for the net charge measurements on the high altitude orbits, for which the spacecraft is spin-
ning thus that the four probes can stretch out at the ends of the four wire booms on the spin plane as shown in 
Figure 9. Performing similar error analysis as in Section 3, it is found the sensitivity of the probes is required to 
reach 0.5  mV, which still needs technical efforts to achieve in the future.

5. Summary and Discussions
Preliminary explorations for measuring the net charge density in space have been presented in this study. Three 
schemes for the charge density measurements have been developed.

The first scheme deduces the charge density based on four spacecraft electric field measurements. Based on the 
electric fields 𝐴𝐴 (𝑬𝑬𝛼𝛼, 𝛼𝛼 = 1, 2, 3, 4) observed at the four spacecraft, we can obtain the gradient of the electric field 
at the barycenter of the constellation, 𝐴𝐴 (∇𝑬𝑬)𝑐𝑐 , and furthermore, the divergence of the electric field, 𝐴𝐴 (∇ ⋅ 𝑬𝑬)𝑐𝑐 . The 
Gaussian theorem yields the charge density as 𝐴𝐴 𝐴𝐴 = 𝜖𝜖∇ ⋅ 𝑬𝑬 . This algorithm requires the constellation not to be 
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distributed in a plane or linearly. In other words, the three eigenvalues of the volumetric tensor of the constellation 
should be non-vanishing. Based on this algorithm, an analysis on the electric field data acquired during a dayside 
magnetopause crossing event by the MMS constellation shows a charge separation in the magnetopause boundary 
layer and that the positive charges are accumulated on the magnetospheric side while the negative charges are 
accumulated on the magnetosheath side. A normal electric field pointing at the magnetosheath is also discovered. 
This confirms a previous theoretical prediction (Hughes, 1995; Parks, 1991).

Another charge density measurement scheme is based on 10 or more electric potential probes. By using a new-
ly developed algorithm (C. Shen et  al., 2021), the linear gradient, 𝐴𝐴 (∇𝜙𝜙)𝑐𝑐 , and the quadratic gradient, 𝐴𝐴 (∇∇𝜙𝜙)𝑐𝑐 , 
of the electric potential at the center of the probes can be calculated from the 𝐴𝐴 𝐴𝐴 ≥ 10 electric potentials, 

𝐴𝐴 𝐴𝐴𝛼𝛼(𝛼𝛼 = 1, 2,⋯ , 𝑁𝑁) , as measured at the N probes. Furthermore, the electric field and the net charge density at 
the center of the probes can be calculated using 𝐴𝐴 𝐄𝐄 = −(∇𝜙𝜙)𝑐𝑐 and the Poisson equation, 𝐴𝐴 𝐴𝐴 = −𝜖𝜖∇2𝜙𝜙 , respectively.

This scheme requires the probes to be distributed uniformly. In other words, the eigenvalues of the 𝐴𝐴 6 × 6 matrix 
𝐴𝐴 ℜ should be non-vanishing (C. Shen et  al., 2021). The accuracy of the charge density estimated by the algorithm 

is of first order and that of the electric field is of second order. Modeling also shows that more probes lead to 
higher accuracy.

Finally, two other schemes are presented to measure the electric charge density, which improve on the existing 
schemes for electric field observations onboard spacecraft. If one more electric potential probe is added in ad-
dition to the six electric potential probes of the electric field equipment onboard the MMS spacecraft (that are 
distributed symmetrically on the three axes of the Cartesian coordinate system), the charge density can be derived 

Figure 10. The dependence of the truncation errors of the calculations by using the eight-probe scheme on the relative 
measurement scale L/D for the case of a uniformly charged ball. Panels (a) and (b) show the relative truncation errors of the 
quadratic gradient of the electric potential (solid lines) and the charge density (dashed lines) at 𝐴𝐴 [0.5, 0, 0] and 𝐴𝐴 [0.5, 0.4, 0.3] in 
the ball, respectively. Panels (c) and (d) show the relative truncation errors of the quadratic gradient of the electric potential 
(solid lines and left vertical axis) and the absolute errors of the charge density (dashed lines and right vertical axis) at 𝐴𝐴 [8, 0, 0] 
and 𝐴𝐴 [2, 2, 6] out of the ball. In panel (c), the orange line orange line is overlayed with the green line. In panel (d), the blue line 
is overlayed with the orange line.
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along with the electric field vectors. The seventh probe is placed at the origin of the coordinate system. Due to the 
shielding potential of the spacecraft, this seven-probe scheme cannot be applied to measurements in space. How-
ever, it can be utilized in charge density measurements in ground-based laboratory experiments. Alternatively, by 
placing two more probes symmetrically on the two stiff booms in the six-point scheme of the MMS constellation, 
the eight-probe scheme will work for charge density measurements in space. The simulation test shows that the 
estimated electric field is of fourth-order accuracy and the charge density is of second-order accuracy. The trun-
cation errors contained in this scheme are much less than those in the 𝐴𝐴 10 -probe scheme. The implementation of 
this scheme requires further development in the future.
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Introduction  

In this supporting information, the method in Section 2 has been evaluated regarding its 

truncation errors using the uniformly charged ball model which is defined in Section 3 in 

the main text, and the ten-probe method discussed in Section 3 and the eight-probe 

scheme in Section 4.2 has been evaluated using a non-uniformly charged ball model in 

which the charge density is inversely proportional to the square of the distance from the 

center. 

 

We present a brief summary of the two charged ball models used here. 

A uniformly charged ball with radius of 𝑟0 and charge density 𝜌 generates an electric 

potential field of 
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where 𝑄 =
4

3
𝜋𝑟0

3𝜌 is the total charge and 𝑟 is the distance from the center of the ball to 

the measurement point. In the modeling, constant values of 1 are assigned to 𝜌, 𝑟0, and 𝜖, 

i.e., 𝜌 = 𝑟0 = 𝜖 = 1, to faciliate the calculations. 

 

A non-uniformly charged ball with radius of  𝑟0 and charge density  𝜌 = 𝑏/𝑟2 generates 

an electric potential field as, 

𝜑(𝐫) = {

b
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 (s2) 

wher 𝑟 is the distance from the center of the ball to the measurement point. In the 

modeling, constant values of 1 are assigned to 𝑏, 𝑟0, and 𝜖, i.e., 𝑏 = 𝑟0 = 𝜖 = 1, to 

faciliate the calculations. Local scale of the potential field, 𝐷, is set equal to 𝑟 in this 

model. 

This supporting information includes five plots, Figure s1 to Figure s5. Figure s1 and s2 

are for the evaluation of the method in Section 2, Figure s3 and s4 are for the ten-probe 

method, and Figure s5 is for the eight-probe scheme.  

 

Figure s1 shows a schematic drawing of the modeling procedure and a comparison 

between the charge density along the radial axis in the vicinity of a uniformly charged 

ball obtained from the calculation by the algorithm in Section 2 and its theoretical value. 

It can be seen from Figure s1 that the calculation is very accurate. Figure s2 presents the 

relationship between the truncation errors of the gradient of electric field and the relative 

measurement scale modeled for a uniformly charged ball. It is indicated from Panels (a) 

and (b) of Figure s2 that, within the uniformly charged ball, the truncation errors of the 

charge density is nearly zero, in agreement with the expectation. As shown in Panels (c) 

and (d), outside of the uniformly charged ball, the relative truncation errors of the electric 

field are about at the first order of the relative measurement scale (L/D), while the 

absolute error of the charge density is very small and also at the first order of L/D. 

Figures s3 and s4 illustrate the truncation errors of the calculations with the 10-probe 

scheme for the regions within and outside the charged ball, respectively. It is indicated 

that, the errors of the linear gradients are at the second order of the relative measurement 

scale L/D, while the errors of the quadratic gradients are at the first order of the relative 

measurement scale. 

Figures s5 shows the truncation errors of the calculations by using the 8-probe scheme for 

the regions both within and outside of the charged ball. The truncation errors of the 

quadratic potential gradients and charge density are all at the second order of the relative 

measurement scale L/D. 
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Figure S1. The charge density along the x-axis in the vicinity of a uniformly charged ball 

based on the Gaussian theorem calculation (red points, 𝜌𝑎) and its real value (black solid 

line, 𝜌𝑟), and a schematic view of the measurement modeling. The dashed circle shows 

the schematic profile of the charged ball of radius 𝑟0. The constellations of four blue 

points connected by green lines are the tokens of enlarged constellations of spacecraft 

moving from the left to the right. Red points indicate the calculated charge density which 

is fairly close to the real charge density encountered during the flight. The parameters in 

the modeling are set as 𝜌 = 𝑟0 = 𝜖 = 1. The relative measurement scale 𝐿/𝐷 in this 

flight is on the order of 0.01, where 𝐿 is the characteristic spatial scale of the 

constellation of spacecraft and 𝐷 is the local characteristic scale of the electric field.  
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Figure S2. The truncation errors of the gradient of the electric field by the relative 

measurement scales for a uniformly charged ball. Panel (a) and (b) show the relative 

truncation errors of the gradient of the electric field (solid lines) and the charge density 

(dashed lines) at [0.5,0,0] and [0.5,0.4,0.3] in the ball, respectively. Panel (c) and (d) 

show the relative truncation errors of the gradient of the electric field (solid lines and left 

vertical axis) and the absolute errors of the charge density (dashed lines and right vertical 

axis). 
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Figure S3. The dependence of the truncation errors of the calculations by using the 10-

probe scheme on the relative measurement scale L/D for the case of a charged ball with 

its charge density 𝜌 = 𝑏/𝑟2. The measurements are performed inside of the charged ball. 

The left side panels, (a), (c), and (e), show the truncation errors of the calculated non-

vanishing components of the linear gradient by 𝐿/𝐷 at three different locations, [0.1,0,0], 
[0.4,0,0], and [0.7,0,0], of the barycenter of the 10 probes inside the ball. The right side 

panels, (b), (d), and (f), illustrate the relative errors of the non-vanishing components of 

the quadratic gradient and charge density (dashed line) calculated for the same three 

locations of the barycenter. It is noted that 𝜙,1 ≡ 𝜕𝑥𝜙 and  𝜙,2,2 ≡ 𝜕𝑦𝜕𝑦𝜙, where a 

comma denotes partial differentiation. 
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Figure S4. The dependence of the truncation errors of the calculations by using the 10-

probe scheme on the relative measurement scale L/D for the case of a charged ball with 

its charge density 𝜌 = 𝑏/𝑟2. The measurements are made outside of the charged ball.  

The left side panels, (a), (c), and (e), show the truncation errors for the non-vanishing 

components of the linear gradient as a function of 𝐿/𝐷 calculated for three different 

locations of the barycenter of the 10 probes, [3,0,0], [5,0,0], and [8,0,0]. The right side 

panels, (b), (d), and (f), illustrate the relative errors of the non-vanishing components of 

the quadratic gradient and the absolute value of the charge density (dashed line) 

calculated for the same three locations. It is noted that the real charge density outside of 

the ball is zero. 
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Figure S5. The dependence of the truncation errors of the calculations by using the 8-

probe scheme on the relative measurement scale L/D for the case of a charged ball with 

its charge density 𝜌 = 𝑏/𝑟2.  Panel (a) and (b) show the relative truncation errors of the 

quadratic gradient of the electric potential (solid lines) and the charge density (dashed 

lines) at [0.5,0,0] and [0.5,0.4,0.2] within the ball, respectively. In panel (a), the blue and 

orange lines have been overlaied by the green line. Panel (c) and (d) show the relative 

truncation errors of the quadratic gradient of the electric potential (solid lines and left 

vertical axis) and the absolute errors of the charge density (dashed lines and right vertical 

axis) at [8,0,0] and [2,2,6] outside of the ball. In panel (c), the orange line has been 

covered with the green line. In panel (d), the blue line has been overlaied by the orange 

line. 
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