

1. BACKGROUND

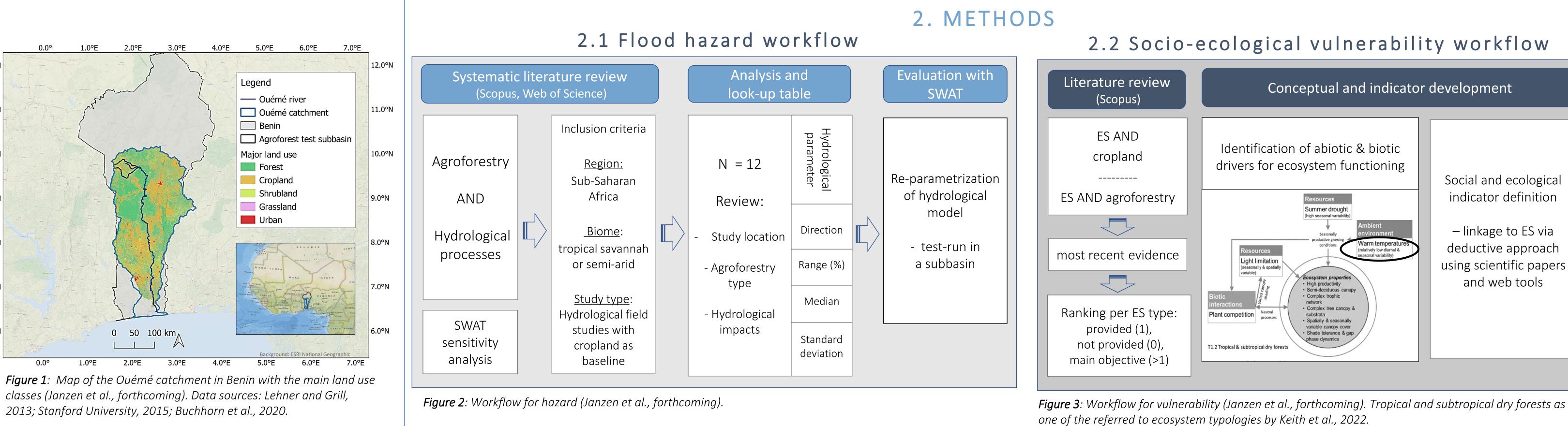
- Ecosystem-based disaster risk reduction (Eco-DRR) is well recognized as cost-effective measure to tackle flood risk (Renaud et al., 2013). Eco-DRR provide ecosystem services (ES) that reduce all three 11.0°N components of flood risk, namely the flood hazard, the exposure to and the vulnerability to flood (Walz et al., 2021).
- Yet, the contribution of Eco-DRR towards all risk dimensions is not 9.0°N sufficiently acknowledged in evaluations. Neither are there established standards for modelling Eco-DRR effects on the flood hazard in extensive catchments (Kumar et al., 2021), nor is ecosystem functionality and vulnerability adequately considered (Shah et al. 2020).
- By the case of agroforestry in the Ouémé River Basin in Benin, this research addresses the need to better understand and evaluate the effect of Eco-DRR on all components of disaster risk to move towards the comprehensive evaluation of Eco-DRR.

Figure 4: Framework for advancing the conceptual understanding, assessment and evaluation of agroforestry's impact on the flood hazard and, eventually, exposure. (Janzen et al., forthcoming).

4. CONCLUSIONS

Understanding the impacts of agroforestry on all three components of flood risk (hazard, exposure, vulnerability) revealed possibilities to advance on the comprehensive evaluation of Eco-DRR.

- While demanding context-specific adjustment, many of the entry points are applicable for the evaluation of Eco-DRR measures tied to land use conversions: • Reviewing hydrological studies on Eco-DRR effects in a particular biome can inform a look-up table on mean changes in hydrological parameters upon
- For ecosystem vulnerability, a clear understanding of what constitutes a functioning ecosystem is key.



• Renaud, F. G., Sudmeier-Rieux, K., & Estrella, M. (2013). The role of ecosystems in disaster risk reduction. United Nations University Press.

Ecosystem-based approaches for flood risk reduction: Advances in their comprehensive evaluation using the case of the Ouémé River Basin in Benin

Balzer, J.^{1,2}, Janzen, S.¹, Merk, F.³, and Walz, Y.¹ Contact: *balzer@ehs.unu.edu*

¹ United Nations University, Institute for Environment and Human Security (UNU-EHS), Bonn, Germany ² University of Bonn, Department of Geography, Bonn, Germany ³ Technical University of Munich, Chair of Hydrology and River Basin Management, Munich, Germany

implementation. A respective re-parameterization of the hydrological model can demonstrate the effect of Eco-DRR on the flood hazard at catchment-scale.

• Understanding and assessing ES provided by the Eco-DRR compared to the previous land use allows evaluating a measure's impact on social-ecological vulnerability.

• Buchhorn, M., Smets, B., Bertels, L., Roo, B. de, Lesiv, M., Tsendbazar, N.-E., Herold, M., & Fritz, S. (2020). Copernicus Global Land Service: Land Cover 100m: collection 3: epoch 2019: Globe 2020. https://land.copernicus.eu/global/products/lc (Accessed 21 April 2022). • Janzen, S., Balzer, J., Merk, F., Eberle, C., (..) & Walz, Y. Moving towards the comprehensive evaluation of ecosystem-based disaster risk reduction: based on the example of agroforestry for flood risk reduction. forthcoming. • Keith, D. A., Ferrer-Paris, J. R., Nicholson, E., Bishop, M. J., Coregr, E. J., Watermeyer, K. E., Essl, F., Faber-Langendoen, D., Franklin, J., Lehmann, C. E. R., Etter, A., Roux, D. J., Stark, J. S., Rowland, J. A., (..), Kingsford, R. T. (2022). A function-based typology for Earth's ecosystems. Nature, 610(7932), 513–518. • Kumar, P., Debele, S. E., Sahani, J., Rawat, N., Marti-Cardona, B., Alfieri, S. M., Basu, A. S., Bowyer, P., Charizopoulos, N., (..), Zieher, T. (2021). Nature-based solutions efficiency evaluation against natural hazards: Modelling methods, advantages and limitations. The Science of the Total Environment, 784, 147058. • Lehner, B., & Grill, G. (2013). Global river hydrography and network routing: baseline data and new approaches to study the world's large river systems. Hydrological Processes, 27(15), 2171–2186.

• Shah, M. A. R., Renaud, F. G., Anderson, C. C., Wild, A., Polderman, A., Votsis, A., Pulvirenti, B., Basu, B., Thomson, C. C., Wild, A., Domeneghetti, A., Polderman, A., Votsis, A., Pulvirenti, B., Basu, B., Thomson, C. C., Wild, A., Domeneghetti, A., Polderman, A., Votsis, A., Pulvirenti, B., Basu, B., Thomson, C. C., Wild, A., Domeneghetti, A., Polderman, A., Votsis, A., Pulvirenti, B., Basu, B., Thomson, C. C., Wild, A., Domeneghetti, A., Polderman, A., Votsis, A., Pulvirenti, B., Basu, B., Thomson, C. C., Wild, A., Domeneghetti, A., Polderman, A., Votsis, A., Pulvirenti, B., Basu, B., Thomson, C. C., Wild, A., Domeneghetti, A., Polderman, A., Votsis, A., Pulvirenti, B., Basu, B., Thomson, C. C., Wild, A., Domeneghetti, A., Polderman, A., Votsis, A., Pulvirenti, B., Basu, B., Thomson, C. C., Wild, A., Domeneghetti, A., Polderman, A., Votsis, A., Pulvirenti, B., Basu, B., Thomson, C. C., Wild, A., Domeneghetti, A., Polderman, A., Votsis, A., Polderman, A., Pol • Stanford University (Ed.). (2015). First-level Administrative Divisions, Benin. EarthWorks. https://earthworks.stanford.edu/catalog/stanford-fm341nh3001 (Accessed 22 January 2022). • TEEB (2010). The Economics of Ecosystems and Biodiversity: Mainstreaming the Economics of Nature. [Groot, R. S. de, Fisher, B., Christie, M., Aronson, J., Braat, L., Haines-Young, R., Maltby, E., Neuville, A., Polasky, S., Portela, R., & Ring, I.]. http://teebweb.org/publications/teeb-for/researchand-academia/. (Accessed 21 April 2021).

• Walz, Y., Janzen, S., Narvaez, L., Ortiz-Vargas, A., Woelki, J., Doswald, N., & Sebesvari, Z. (2021). Disaster-related losses matter for disaster risk reduction? International Journal of Disaster Risk Reduction, 63, 102425.

3. RESULTS

