Developing Storylines for Unprecedented Extreme Events using Ensemble Boosting

Luna Bloin-Wibe¹, Erich Fischer¹, Reto Knutti¹
Institute for Atmospheric and Climate Science, ETH Zurich

1. How can storylines and boosting help assess extremes?

Storylines?
“A physically self-consistent unfolding of past events, or of plausible future events or pathways”[1]
Likelihood of event → impact of event

Ensemble Boosting?
1. Select a model event (highest temperature)
2. Re-initialize before peak: initial condition perturbation
3. Run until past peak

Quantitative analysis of tail events

2. Storyline: the Pacific Northwest Heatwave

PNW, a record-shattering extreme
End of June 2021
49.6 °C (Lytton), 5 °C warmer than previous record
Extensive ecosystem damage, excess mortality [2]
Multi-day Omega Block and solar irradiation

T_{2m}: 4.99 σ above seasonal average
Z_{500}: 4.66 σ above seasonal average
EF: -1.83 σ above seasonal average

The boosted heatwave shows similar anomaly patterns to observations

3. Ensemble Boosting: Analogues

Models and variables
1) Identify real-life extreme or plausible climate change risk:
 ERA5 for original event (reanalysis)
2) Select analogues from climate model
 CESM2 for model analogues
• 30-member ensemble
• 2005-2035 (future years warmed w.r.t. SSP-3.70)

Selection criteria:

- \(T_{\text{max}}(i) - T_{\text{avg}}(i) \) [σ]

With ensemble boosting, CESM2 simulates heatwaves that exceed PNW 2021

4. Extreme boosted analogues

Humid heatwaves
Heat stress indicator: \(T_w \) (wet-bulb temperature)
Mortality threshold of 35 °C [3]
Identify unprecedented extremes (jumps) w.r.t model records
Probability of jump (over all years)

Droughts in Switzerland
Megadroughts (1-5 years), impact of heavy rainfall aftermath
Seasonal droughts

Selection Criteria:

- \(H = \text{BYA} - \text{WR} \)
- Baseline Yearly Average (BYA) [mm/yr], Wanted Reduction (WR), Time Period (TP)

5. What to boost and storyline-analyze next?

References