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Introduction

Bay of Bengal (BOB): unique Indian Ocean
basin, compared many ocean basins as-

» Semi-enclosed (landlocked in 3 sides).

»Seasonally reversing monsoon wind
forcing.

» Fertile ground for monsoon depressions
{Gad il  2000] and tropical cyclones
pre/post monsoon).

»Large amount of fresh-water discharge

from continental river systems (e.g.- GB,
Irrawaddy, GM etc.).

»Remote wind forcing from the equatorial
Indian Ocean.

»Barrier layer formation in the northern
bay during the summer monsoon.

Study Domain: Bay of Bengal
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BOB circulations

Upper-ocean currents in the BOB are

critical factors that determine its fresh-
water/salt and heat transport.

Western boundary current (EICC) is
seasonally reversing. In summer, EICC
splits into two parts, equatorward
north part and poleward south part at
16°N. In spring, EICC is poleward, and
in fall, it is equatorward. (Shetye et al.
1991, 1993 and 1996; McCreary et al.
1996; Shankar et al. 1996).

Summer Monsoon Current (SMC):
instrumental for intrusion of hig
saline Arabian seawater into the bay
during the ISM (Vinayachandran et al.,
1999; Webber et al., 2018).

Local and remote forcing on the bay
circulations (Yu et al., 1991; McCreary
et al.,, 1996; Shankar et al., 1996;
Vinayachandran et al., 1996)
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Continue...

* BOB is subjected to monsoonal mixing by northward propagation of
ISOs (Sengupta and Ravichandran 2001; Mahadevan et al 2016;

Murthy et al, 1992).

 Spatial and temporal variability of upper ocean circulations in the BOB
from sub-seasonal to seasonal to long timescale using
observation/model and impact on biogeochemistry of the basin, were
studied well. (Webber et al, 2018; Gopalakrishna et al, 2020; Babu
1990; Mukherjee et al, 2018; Phillips et al 2021; Somayajulu et al,
2003; Potemra et al, 1991; Eigenheer and Quadfasel, 2000; Shankar
et al, 2002; Vinayachandran et al., 2005)



Bay circulations at higher resolutions

 Mesoscale circulations in the bay: Eddy dominated with typical radius of
100s km, life span of few weeks to months and amplitude +/- 10s cm
(Gopalan et al., 2000; H. et al., 2019; He et al., 2020; Roman-Stork et al.,
2019).

e Statistical analysis, vertical structure, dynamics, seasonal to annual
variabilities of eddies are extensively studied in the previous researches
(Chen et al., 2012; Dandapat and Chakraborty, 2016; Cui et al., 2016; Cheng
et al., 2018; Gulakaram et al., 2020).

 Mesoscale eddies have a significant role in biological productivity in the
bay through the upwelling of subsurface nutrient-rich water to the
euphotic zone (Jyothibabu et al., 2014; Kumar et al., 2004; Jyotibabu et al,
2021)

* Dynamics of eddy generation in central BOB (Chen et al, 2018), role of
Andaman-Nicobar island in generation of eddies in western BOB
(Mukherjee et al, 2019)
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* There is two more modified type of eddies, called P p,/\
the mode-water anti-cyclonic (cyclonic thinny) . .
eddies due to rising (deepening) of seasonal p\/ > p\/

thermocline (McGillicuddy et al. 2007, 2015).

 Mode-water anti-cyclonic eddy has a similarity
with Intra-thermocline eddies (ITE). ITEs are 4z
regular features in subtropical or subpolar waters Lx
(Barcel’o-Llull et al., 2017; Hormazzbal et al., @ —————m = ©————
2013; Gordon et al., 2002; Nauw et al., 2006). # S S

» Shi et al, 2018 studied a mode-water eddy in the pz/\ ,,z/_\

Kuroshio extent in northern Pacific ocean. They
also found that this type of eddies can transport
more mass than usual cyclonic/anti-cyclonic
eddies.
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Subsurface eddy in the Bay of Bengal

* Very little is known about the subsurface circulation, and few available studies
report active subsurface eddy fields.

* Madhusoodanan and James, 2003 analyzed the thermohaline features of the
subsurface cyclonic eddy in the south-central bay during August 1999.

e Babu et al.,, 1991 showed a subsurface cold-core cyclonic eddy in July 1984 using
CTD data centered at 17°40‘N and 85°19°E.

e Gordon et al., 2017 has observed an ITE in the western BOB on 3 December 2013.
They hypothesised that this ITE resulted from the interaction between a preceding

Cyclone “Nihar” and a westward-moving AC eddy (from the eastern BOB) on 27
November 2013.

* So far, it is unclear whether ITE in the bay is a seasonal or annual phenomenon or a
rare exceptional event in response to external forcing for surface water subduction
like tropical cyclones.

* Importance: Knowledge of the subsurface circulation is crucial to understand the
salt and heat budget and the mechanisms that control the evolution of the
warming and cooling cycle of the sea surface.
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Seasonal thermocline bulge in the Bay of Bengal



Data and methods

e We have used in-situ NOAA’s RAMA buoy (at
90°E, 15°N) surface to subsurface (T, S) data,
satellite derived surface AVISO SLA and Ug data,
surface OSCAR current data, near surface ASCAT
atmospheric wind data.

* Daily data.
* Time period: Nov 2007 to Jan 2019.
* We also used HYCOM re-analysis model

subsurface data to understand the possible
dynamics.

* We have used PyFerret software tool in Linux
environment to analysis and visualize the data
products.

Acronym used
T = Temperature; S = Salinity; SLA = Sea Level Anomaly

= (ug, vg) = Geostrophic ocean surface current
NOAA = National Ocean and Atmospheric Administration

AVISO = Achieving Validation and Interpretation of Satellite Oceanography

OSCAR = Ocean Surface Current Analysis Real-time
ASCAT = Advanced Scatterometer
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HYCOM re-analysis data

e Source: APDRC data server.

" Resolution: 1/12°x1/12° (horizontal); 41 vertical layer (with high
resolution within the top 100 m) till 5000 m.

" Temporal range: Jan 1994 to Dec 2015; daily data.
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Primary Results

Time-Depth sections of
RAMA buoy subsurface
temperature
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Year | Winter Summer | Max. Magnitude in Stretching Cycle of

Months | Months . -

(DJF) (JJA) D26C D12C TC- D26C Doming D12C Denting

Doming | Denting | bulge Start End Dura- | Start End Dura-
AD1 (m) | AD2 (m) | AD (m) Date Date tion Date Date tion
(days) (days)
2013 | Jan 26 78 104 03 Jan 27 Jan 24 15 Dec’12 | 13Feb | 58
Jul 74 75 149 23 Jun 17 Jul 26 05 Jun 17 Aug | 72
2008 | Jan 28 105 133 24 27 Jan | 35 24 Dec’12 | 11Feb | 50
Dec'12
2009 | Jan-Feb 32 68 100 28Jan | 08 Feb | 10 08 Jan 03Feb | 25
2010 Jun 08 30 38 07 Jun 05 Jul 29 07 Jun 22 Jul 44
2012 Jun 28 33 b1 07 Jun 13 Jul 35 13 Jun 14 Jul 32
2014 Jun-Jul- | 13 90 103 07 Jul 16 Aug | 40 13 Jun 16 Aug | 64
Aug

2015 Jul-Aug | 22 87 109 28 Jun | 22 Aug | 55 23 Jun 27 Aug | 66
2016 Jul 19 90 109 07 Jul 02 Aug | 27 03 Jul 07 Aug | 36
2017 Sept 16 36 52 05 Sept | 05 Oct | 30 01 Sept 05 0Oct | 34
2018 | Dec'12- 03 37 40 10 Dec | 12 Jan 34 30 Dec 18 lan 20

Jan'13
2019 | Jan 06 47 53 29 Dec | 2 Feb 36 29 Dec 23 Feb | 57

Table: Statistics of
Thermocline Bulge events
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Seasonal
Thermocline
Bulge

2007-2008 and
2012-2013

winter cases

/




Domcng in thermocline |01-D1'| =AD1
ik Upper boundary of (Doming magnitde )
thermodine 0260) 1oy py') = am2
801 / (Denting magnitude
D1 (~90-100) 1 d
2 T1 = Starting
z Thermocline  Ofthe buge
H 3 - T2= Ending
3 of the bulge
D2 (~ 280-300) L o
W2 | Detgn Y Lower Bounadary of
02 b thermocline thermocline (012C)
400. B HETTR TR TR TV TR T RR TR R TR | L
DEC JAN YEB l ]
2007 2008 n Time n
OSCAR U,V —> 0.50 m/s i Unit: m
17,870 : ‘ - i = [ s 3D Schematic of TC Bulge.
) 0.25

;i i X

e | T\ VA '.‘ | | .-'k o Upper part of the TC is
Ny - iy \ & 0. doming up and lower part
e : °% is denting down to form a
s I - N - —os bulge structure inside
e _;0‘-; thermocline of a surface

intensified  Anti-cyclonic
-o2s  Eddy.

13.5°N

12.5°N

\.,
ﬂs

0‘3 98.0°E 86.0°E 90.0°E 94.0°E 98.0°E

Fig 2: Thermocline Bulge formation in 2007-08 and 2012-13 winter and corresponding surface intensified A, CE



Dynamics of the
thermocline bulge at the
buoy location
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GENESIS AND PROPAGATION OF ACE
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Fig 3: From surface current vector and SLA analysis, ACE is generated off-Myanmar and propagate south-
west direction due to Rossby wave forcing and crosses the buoy location during Dec to next Jan. 21



HOW ISTC-BULGE RELATED TO ACE?

Answer:

‘Eddy-wind" interaction (Stern, 1987: Seo et al., 2019; Gaube et al, 2014; McGillicudy et al.,

2014, 2015):

1. Eddy current effect on local relative wind-stress (linear)

2. Eddy current vorticity gradient effect on local wind-stress (non-linear)

3. Eddy-induced SST gradient effect on local wind-stress (less contribution in most of

the basins like Bay of Bengal (Seo et al., 2019))
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Eddy-wind interaction along the off-Myanmar coast

* Positive value of Ekman Pumping velocity means: Upwelling.
* Till Mid May: upwelling in-between 92°-94°E .

* Along 92°-94°E and 14°-17°N, Anti-cyclonic eddy (ACE) formed
during late May to early June 2013.

* Hence, upwelled thermocline got trapped by the ACE in the
same space and time and further formed the bulge structure
in its west-southward journey.

* West-southward movement of the system was enforced by
the Rossby wave radiated from the coastal Kelvin waves along
14°-16°N.

McGillicuddy et al., 2015 studies the “eddy-wind” interaction

to form lens like mode-water eddy (of biconvex lens shape)
from regular ACE in Sargasso Sea, Atlantic Ocean.
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WIND FIELD OFF-MYANMAR IN WINTER

a. ASCAT wind-stress (Tx, Ty) —> 0.190 N/m?2 unit:N /mz
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Fig 5: Upwelling favorable winter monsoon wind-stress field (climatology) off-Myanmar.
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EDDY-WIND INTERA
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CONNECTION TO EQUATORIAL DYNAMICS

(a) OSCARuU,v —» 1m/s () Black contour: 1000 m .isoboth x symbol: RAMA buoy location
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Coastally trapped downwelling Kelvin waves due to equatorial Wrytki jet helps in genesis of ACE off-
Myanmar. Then local upwelling favorable winds act of ACE. Thus, TC-bulge forms by “Eddy-Wind”
interactions and propagates with ACE to RAMA location. 26
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Results from HYCOM re-analysis
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HYCOM re-analysis model data
Location: 90°E, 15°N
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How is it link to subsurface type ACE ?

Unit: 107M-9) x m~(-1) sM(-1) (b)summer:color—salinity,contour—temp
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Left: Low PV core (HYCOM simulation) and Right: Low salinity core (RAMA data), in the upper
part of the bulged TC. 31



29-Jun1 3 HYCOM V-velocity along 15°N U-velocity along 90°E Unit: m/s
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Subsurface velocity structure (Longitude-depth section in the right and Latitude-depth section in the left) in the

peak summer TC bugle from HYCOM simulation. It shows similarity with a subsurface type ITE (Shi et al., 2018) 3
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TC bulge event in winter (Nov12 to
Feb13) has the similar mechanism
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Timeline of events

Wyrtki jet excites equatorial dw-KW. More robust in May13 (Duan et al, 2016)

!

At Sumatra coast, equatorial KW bifurcates into 2-parts. Northward branch:
coastally trapped dw-KW (as a current) along the eastern boundary of BOB

l, Now,
+ve Ekman pumping Northward current meanders due to Irrawaddy northward
by uw-favorable local topography. An ACE (“IACE”) gets separated from coastal dw-
coastal wind field mean flow (92E-98E, 14N-17N) \ KW gets
weakened
l . ) and
Doming in ACE INEeracts Witk “TC-bulge” becomes
subsurface TC the dome-shaped TC in winter & aw-KW in
level water in 92E- in 92E-94E, 15N-16N summer south-ward

94E, 14N-17N 2013

The entire system starts its
westward journey at 92E
along 15N-16N enforced by

TC-bulge feature with
IACE crossed the RAMA
buoy (at 90E,15N) when

System finally terminated
at 86E-87E as IACE gets

weakened (in Feb13 &

Augl3) the dw-RW at speed of 7-8

km/day

buoy was at the western
rim of the IACE

Flowchart of events that leads to TC bulge Peak Bulge: 13 Jan & 2/7 Jull3 34
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