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Artifical Intelligence (A.I): Scientific domain that seeks to solve logical or 
arithmetic problems by mimicking the decision-making capacity of a human 

brain.
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Granular transport

Bed load
(reptation + creeping + rolling)

Saltation load

Suspension load

Bedforms: spatially organized periodic
patterns formed by the flow of a fluid
on a substrate and by different
processes of material mobilization.
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Livingstone, 2010 Köhler et al., 2021
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Create a vector dunes database

How to map quickly and accurately ?
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Develop an automated mapping protocol
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Residual Relief (RR) computation and sampling

OUTPUT VISUEL

Large generation

Dune fields show superimposed generations
of dunes (m to km-scale) producing
complex topographic signal on DEMs. Each
dune scale patterns can be analyzed
independently if the topographic signal is
disentangled with the Residual Relief
approach (Hiller and Smith, 2008).

We computed it on 100 training samples
that are then used as learning data set to
map the dune outlines.
The samples are selected from four arid
regions and cover a large range of dune
types (barchanoid, star, dome, linear and
complex dunes). Each sample represent a
DEM on which dunes are identified and
digitalized manually. This manual mask is
considered as a "ground truth" reference by
the Deep Learning algorithm.
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Daynac et al., (in prep)
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Deep Learning algorithm - Convolutionnal neural network (CNN) training

Recall
87%

Accuracy
91%

Quality
70%

OUTPUT VISUEL
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Daynac et al., (in prep)

The CNN is a robust algorithm to detect the bedform shapes in a landscape and produce a binary raster of this interest objects
(DeLatte et al., 2019; Shumack et al., 2020).

The CNN architecture is based on the assemblage of a contration path (block A) and an expansive path (block B), each path is
characterized by two phases of convolutions.

Convolution is a mathematical matrix operation that consists of multiplying the values associated with the features of interest
(here the contour of the dunes) by a kernel filter (for example the contour detection filter). This process is repeated until the
entire image is filtered. The sum of the matrices products generates an image of a smaller resolution.

The convolution steps are followed by different matrix operations of maxpooling, convolution transpose and concatenation
that allow us to summarize and localize on the image all values associated with our objects of interest.
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OUTPUT VISUEL

Crestlines extraction

9

The crestlines extraction is based on the
Volumetric Obscurance algorithm (Rolland
et al., 2022). The tool calculates for each
pixel on a DEM the ratio between the
volume below and above the topography
in a sphere of a given radius centered at a
given point of the topographic surface.

The output raster is reduced to a branched
skeleton from our automated algorithm
that analyzes the branch connectivity of
each bedform crestlines to keep the
longest segment defined as the main
crestline of a dune.
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Rub’Al Khali dune field map
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Daynac et al., (in prep)
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Morphometric parameters of Rub’Al Khali dunes
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Comparison with current map

modified from Edgell, 2006
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This is one of the first detailed maps of morphometric
parameters of the Rub’Al Khali dunes showing:

- Mean crestlines direction of 81°(range: 45°-135°) for high dunes (>70m) and of 35° (range: 171°-
180°) for smaller dunes (<70m);

- A central area with a very consistent pattern of long (>2 km) and high (> 70m) dunes;
- A south area with a very consistent pattern of shorter (< 1 km) and a height gradient that decreases

to the south (70 to 20m);
- A similarity between the central area pattern of our work and the megabarchan area identified at

the dune field scale in previous studies;
- A similarity between the south area pattern of our work and seif dunes area identified at the dune

field scale in previous studies.
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Comparison with current map

Morphometric parameters of Namib dunes

modified from Livingstone et al., 2014
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Morphometric parameters of Namib dunes
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This is one of the first detailed maps of
morphometric parameters of the Namib
dunes showing:
- Mean crestlines direction of 149°(range:

33°-170°) for very high dunes (>120m) and
of 160° (range: 123°-170°) for smaller
dunes (<25m);

- An area to the north with a very consistent
pattern of long (>10 km) and high (> 80m)
dunes with a mean crest direction of 22°;

- A south area with a very consistent pattern
of long (7.5 to >10 km) and short (<25 m)
dunes with a mean crest direction of 160°;

- A similarity between the different pattern
which are highlighted by the morphometric
parameters of our work and six dune areas
identified at the dune field scale in
previous studies:

▪ Close transverse dunes
▪ Complex linear dunes
▪ Compound linear dunes
▪ Intersecting linear dunes
▪ Simple linear dunes
▪ Star and chain of star dunes
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- Efficient semi-automated protocol for producing a
large-scale dune databases;

- This work is an original production that completes
atlases of these regions present in the literature
the morphological boundaries mapped from
aerial/satellite images (Barth, 2001; Glennie,
1970; Livingstone et al., 2014; McKee, 1979);

- Only a few detection problems were noticed, and
these were caused on by the DEM’s resolution
limit in a few specific locations, which produced a
weak dune signal.
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Various future uses:

➢ Use of neighborhood relationships to
quantify dune dispersion;

➢ Use of drift potential relationships, flux
calculation, wind speed (Tsoar, 2005;
Livingstone, 2007, Ashkenazy and al., 2012,
Chanteloube et al., 2022) to identify the
sedimentary dynamics of dunes;

➢ Produce different detailed atlases of
aeolian dunes diversity and their
morphometric parameters on a global
scale;

➢ Application of the protocol in different
environments: hydraulic & extraterrestrial.

To conclude…
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Source: https://wallpapercave.com

Thank you for your attention and if you
have more questions, contact me:

jimmy.daynac@univ-lemans.fr
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