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Motivation and Questions

High-latitude explosive eruptions inject gases and material
into the polar stratosphere. Since the strength, location,
and stability of the Arctic polar vortex is highly variable,
we ask:

▶How does the Arctic polar vortex state influence
volcanic aerosol evolution?

▶ Is it relevant for the volcanic forcing?

▶Which properties of the polar vortex matter?

Summary and Conclusions

▶The Arctic polar vortex controls the radiative forcing from high-latitude winter SO2 injections. Initial polar vortex state
determines the equatorward SO2 transport (Fig. 1), significantly impacting stratospheric aerosol optical depth (SAOD) (Fig. 3d).

▶Enhanced equatorward transport reduces SO2 e-folding time as the low-latitude OH abundance expedites oxidation (Fig. 2b).

▶Enhanced equatorward transport reduces aerosol growth, amplifying radiative forcing. Cumulative and peak SAOD vary
up to 27 % and 12 %, respectively (Fig. 3d), depending on the meridional dispersal of the SO2 from the first month after eruption.

▶The polar vortex’s stability in the first few weeks controls SO2 transport. Neither zonal wind nor temperature alone correlate
with the SO2 e-folding time.

Model and Experiments

▶High-top aerosol-chemistry Earth system model CESM2-
WACCM6* [1–3]

▶ Icelandic explosive eruptions† of Pinatubo-magnitude

▶Sulphur, chlorine, and bromine co-injection‡

▶Six polar vortex initial conditions (Fig. 2)

*1850 background conditions, 1◦-resolution.
†64◦N, 19◦W (Katla volcano) [4, 5]. 24 km altitude on January 1.
‡17 Tg SO2, 2.93 Tg HCl, and 9.5 Gg HBr. Halogen loads based on average

Central American Volcanic Arc emissions [6, 7], assuming 10 % injection
efficiency [8–11].
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Fig. 1: The polar vortex state controls the initial transport of SO2. In ensemble members 1-6, the volcanic SO2 is either transported towards the equator or confined to the polar latitudes, depending on the initial

condition of the polar vortex (see Fig. 2). The plot shows the mean column SO2 in the first month following the eruption (January) as well as the monthly mean 24 km geopotential height contour (dotted).
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Fig. 2: The stability of the initial polar vortex determines SO2 transport and its lifetime. a) DJF daily
mean polar vortex wind and temperature distribution in the control (black circles/histograms/lines) with highlighted
January 1-20 of each ensemble member. Errorbars represent 1σ standard deviations centred on means. σU,T , the
sum of the initial states’ wind and temperature standard deviations normalised by corresponding DJF standard
deviations, quantifies the two-dimensional spread of each 20-day cluster. b) Meridional profiles of January mean

zonal mean column SO2 (top abscissa) and the January mean zonal mean OH model climatology at 24 km (bottom
abscissa). Inset shows the relationship between latitude-centre of mass of SO2 profiles and SO2 e-folding time.
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Fig. 3: Aerosol formation rate, sizes, and radiative forcing. a) Equatorward transport impacts SO2

e-folding time (seen in Fig. 1, 2b). b) SO4 aerosol formation mirrors the SO2 oxidation rate. c) Aerosol size (Reff)
is modulated by aerosol formation and growth, both depending on initial SO2 transport. Dashed line: The peak

scattering efficiency of volcanic SO4 as a function of Reff [12]. d) Peak stratospheric aerosol optical depth (SAOD)
(left ordinate) is increased for the ensemble members with smaller aerosols during peak SO4 burden. These

members also show slightly longer SO4 lifetimes due to weaker gravitational settling, resulting in generally larger
cumulative SAOD (right ordinate). Note the different time axes.
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Fig. 4: The sensitivity of volcanic forcing to the initial polar vortex
state is comparable to the sensitivity to several eruption source

parameters and inter-model disagreement. a) Time evolution and b)
meridional profile of stratospheric aerosol optical depth for the baseline

scenario ensemble with varying initial polar vortex states (labelled H-24km),
as well as sensitivity experiments (where H denotes sulphur+halogens and S
denotes sulphur-only experiments), the aerosol-general circulation model
MAECHAM5-HAM [13], and the Easy Volcanic Aerosol forcing generator

(EVA) [14].
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