

An autonomous institute of Nanyang Technological University

EARTH

OBSERVATOR

OFSINGAPORE

SEA² Program

¹Asian School of the Environment, Nanyang Technological University, Singapore, Singapore (<u>sonali005@e.ntu.edu.sg</u>) ²Earth Observatory of Singapore, Nanyang Technological University, Singapore, Singapore

MAIN MESSAGES

- > Displacement risk and radiation models address the two key questions of sea-level rise induced migration, "who will be affected?" and "where will they go?" respectively
- > The risk-informed quantification of displacement improves the reliability of subsequent migration flow projections
- \succ Both the displacement risk and radiation models require minimal data inputs and can be readily applied in data-scare contexts, such as Southeast Asia
- > Preliminary results for Indonesia suggest that sea-level rise can increase migration outflows by at least 18%
- > The displacement risk model can be improved by incorporating multiple hazards and indirect impacts associated with sea-level rise, and the radiation model could be enhanced by testing variables other than population as a proxy for the attractiveness of destinations

INTRODUCTION

Sea-level rise (SLR) induced migration* is a real risk for Southeast Asia (SEA), but has been insufficiently studied

	Jakey				
SLR Hazard	Exposure to SLR in SEA	SLR-linked Migration			
 Globally, 1 billion people to be exposed to coastal hazards by 2050 (Dodman et al., 2022) 	 Growing populations, rapid urbanisation & pre- existing social vulnerabilities 	 Pathways: Uninhabitable conditions Property & infrastructure damage Threats to livelihoods 	• F (i		
 Sea level has risen at a rate of 2.3mm/yr since 1960, and is projected to rise up to 77 cm in the 21st Century (Trisos et al., 2021) 	 GDP losses from SLR expected to be double that of global average (ADB, 2009) 		() ()		
There are 2 key questions to be answered with r to SLR-induced migration					
The window states of the stat	Il be affected?	2 Where will the	э у (
This pertains to	the volume of expected	This pertains to the migra	tion		

* Note that migration is used in this study as an umbrella terms to describe a range of mobility processes, including voluntary migration and forced displacement.

migration, differentiated by the vulnerability

of populations.

Modelling Climate Migration in Southeast Asia due to Sea-Level Rise

Sonali Manimaran^{1,2} and David Lallemant^{1,2}

RESULTS **Baseline Scenario (2010)**

Net migration inflows by province in Indonesia for 2010, as predicted by the baseline radiation model.

NEXT STEPS

Displacement Risk Model

- Consideration of other SLR hazard indirect impacts
- Calibrate displacement threshold historical data
- Improve projections of future population distribution
- Include projections of future prote
- Computation for remaining count

Acknowledgements

This project is supported by the Ministry of Education, Singa T3-1-004, awarded to the Sea-level Rise in Southeast Asia (S

The authors also wish to acknowledge Asst. Prof. Perrine Ha Dr. Indraneel Kasmalkar, of the Earth Observatory of Singapo

References

ADB [Asian Development Bank], 2009. The Economic of Climate Change in Southeast Asia: A Regional Review. Manila, Philippines: Asian Development Bank Bondarenko M., Kerr D., Sorichetta A., and Tatem, A.J. 2020. Census/projection-disaggregated gridded population datasets for 189 countries in 2020 using Built-Settlement Growth Model (BSGM) outputs. WorldPop, University of Southampton, UK. doi:10.5258/SOTON/WP00684 BPS, 2010. *Statistical yearbook of Indonesia 2010*. Jakarta: BPS-Statistics Indonesia. Davis, K.F., Bhattachan, A., D'Odorico, P. and Suweis, S., 2018. A universal model for predicting human migration under climate change: examining future sea level rise in Bangladesh. Environmental Research Letters, 13(6), p.064030.

Simini, F., González, M.C., Maritan, A. and Barabási, A.L., 2012. A universal model for mobility and migration patterns. *Nature, 484*(7392), pp.96-100. risos, C.H., I.O. Adelekan, E. Totin, A. Ayanlade, J. Efitre, A. Gemeda, K. Kalaba, C. Lennard, C. Masao, Y. Mgaya, G. Ngaruiya, D. Olago, N.P. Simpson, and S. Zakieldeen, 2022: Africa. In Climate Change 2022: Impacts, Adaptation, and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [H.-O. Pörtner, D.C. Roberts, M. Tignor, E.S. Poloczanska, K. Mintenbeck, A. Alegría, M. Craig, S. Langsdorf, S. Löschke, V. Möller, A. Okem, B. Rama (eds.)]. Cambridge University Press, Cambridge, UK and New York, NY, USA, pp. 1285-1455, doi:10.1017/9781009325844.011.

NANYANG **FECHNOLOGICAL** UNIVERSITY SINGAPORE

CHOOL OF THE ENVIRONMEN

- 1.38 million people migrated internally, inter-province outmigration rate of 0.77%
- R² = 0.512 (recent flows), validated against 2010 migration statistics
- 90% of the predictions have negative residuals relative to recent flows, but recent flows are cumulative over 5 years
- 1.9 million people predicted to migrate internally with sealevel rise and population growth in 2050, with an interprovince out-migration rate of 0.71%
- Under the baseline scenario in 2050, 1.68 million people were predicted to migrate internally, with an outmigration rate of 0.61%
- With sea-level rise, outmigration increased by an average of 18.29%

2	Radiation Mod	del		
ds and	 Test other proxy value of destinations 	 Test other proxy variables on attractiveness of destinations 		
using	 Validate against ad observed migratic 	 Validate against additional years of observed migration flows 		
oulation	 Pinpoint hotspots of climate out- and in- migration 			
ections levels	Run on smaller sp	Run on smaller spatial scales		
ries in SEA	Run for additional	Run for additional RCPs		
		Poster Abstract (ID: EGU23-7305)		
apore, under its MOE AcRF Tier 3 Award MOE2019- SEA ²) programme.				
mel, Dr. Natasha Bhatia, Dr. Dennis Wagenaar and ore, NTU, for their contributions to this project.				

Disaster Analytics for Society Lab, NTU

