Effects of cable geometry and specific noise sources on DAS monitoring potential

Emanuele Bozzi¹ (Speaker) N. Piana Agostinetti¹, G. Saccorotti², A. F. Baird³, C. Becerril⁴, B. Biondi⁵, A. Fichtner⁶, S. Klaasen⁶, N. Lindsey⁷, T. Nishimura⁸, J. Shen⁹, A. Ugalde¹⁰, F. Walter¹¹, S. Yuan⁵, T. Zhu⁹.

1 University of Milano-Bicocca, Milano, Italy.

2 Istituto Nazionale di Geofisica e Vulcanologia (INGV), Pisa, Italy.

3 NORSAR, Kjeller, Norway

4 Université Côte d'Azur, CNRS, Observatoire de la Côte d'Azur, IRD, Géoazur, Valbonne, France

5 Stanford University, Stanford, California, USA

6 ETH Zürich, Zürich, Switzerland

7 FiberSense™

- 8 Tohoku University, Tohoku, Japan
- 9 PennState University, State College, Pennsylvania, USA
- 10 Barcelona Center for Subsurface Imaging, Barcelona, Spain
- 11 Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Uitikon, Switzerland

Vienna, EGU General Assembly, April 25, 2023. SM 2.1 session

DAS and seismology

-100

18:10:05

18:10:27

18.10.20

18:10:35

Time (UTC)

18:10:42

18:10:50

18:10:57

measurements of the fibre strain/strain rate (**DAS method**).

especially for

(complicated

Arrival time

affected

uncertainties

+ a variety of local noise sources (e.g., cars, pedestrians)

1.DATA GATHERING

(event + a variety of DAS geometries)

2. DEFINITION OF THE GEOMETRICAL PARAMETERS

(Geometry of the problem, event + DAS array)

3. OBSERVED LOCATION UNCERTAINTIES

(Inversion of observed arrival times)

4. TEST DIFFERENT NOISE STATISTICS ASSUMPTIONS TO REPRODUCE THE OBSERVED LOCATION UNCERTAINTIES

(Synthetic traveltimes from known event location and tests on noise statistics assumptions >> event location estimation)

Database

15 DAS datasets and selected events with known location

- "fit-for-purpose" installations
- **Sub-aerial telecom installations**
- Submarine telecom installations

Events

4143.2

[WJ] (WLN) 91142 4142 4142

572.50

directions

•"fit-for-purpose" •Sub-aerial telecom Submarine telecom

- 1. Definition of **four geometrical parameters**
- 2. Automatic onset arrival time picking and event location estimation (McMC method)
- 3. Synthetic tests to explore the reproducibility of the observed location uncertainties with simple noise statistic assumptions (inspired by common noise patterns)

AREA-PAR-1 = A/B

AREA-PAR-2 = C/D

APRAY

RRA

xmax

AZIMUTHAL GAP = A

AZIMUTHAL SPAN = B

Q 100

10-

10-2

10-

V

0.5 1.0

- **Correlation between three geometrical parameters** and location uncertainties (Area-par-1, Area-par-2, azimuthal gap)
- SYNTH-04 test reproduces the azimuth of the observed • uncertainties (directionality of the "uncertainty cone") in around 40 % of the case studies

AREA-PAR-

PARAMETER VALUE

ASPECT RATIO

0 1.5 2.0 PARAMETER VALUE

2.5 3.0 AREA-PAR-2

2 8 2

PARAMETE

AZIMUTH

150

200

250

ANGLE [°]

300

00

GAP

EASTING (UTM) [Km]

EASTING (UTM) [Km]

EASTING (UTM) [Km]

(Bozzi et al., in prep.)

EVENT

EVENT

* EVENT

3

ASPECT RATIO = (ymax-ymin)/(xmax-xmin

Y (UTM

parameters

Geometrical

- **Geometry of the DAS problem.** As in the case of traditional seismometry, the geometry of the DAS sensors and their position with respect to the source zones assume great importance in determining the location accuracy.
- **SYNTH-04 test**. A mixed noise statistics, where a portion of DAS channels are contaminated by gaussian noise, while other by only-retarded noise, provide a better explanation of the observed location uncertainties.

• Opportunities :

- 1) Understand the origin of SYNTH-04-like sources and better modeling procedures,
- 2) Study mitigation strategies in common seismic monitoring procedures,
- 3) Further studies can benefit from this work to explore noise parameters and/or outliers' thresholds via Monte Carlo sampling.

Thank you for listening! Questions?

Emanuele Bozzi e.bozzi3@campus.unimib.it