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• Previous modelling works have studied the
influence of slab width (W) on trench retreat
velocities (𝑉𝑇) (Schellart et al., 2007; Stegman et
al., 2010), showing an inverse dependence of 𝑉𝑇
on W: the wider the slab, the smaller the retreat
velocity. However, when it comes to narrow
subduction zones, there is no correlation
between W and 𝑉𝑇.

• These studies that specifically focused on W did
not include an overriding plate (OP), which is
known to strongly affect subduction dynamics
(Hertgen et al., 2020; Yamato et al., 2009).

Figure 1. Synthetic overview of the displacements of the western
Mediterranean subduction zones since 35 Ma. Figure taken from
Romagny et al. (2020).

We have conducted 3D subduction
models including an OP to evaluate the
effect of W and OP thickness on 𝑉𝑇 .

What is happening with
narrow subduction zones?
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Figure 2. Three-dimensional model setup and boundary conditions. Only half of the subduction zone is
modelled due to the symmetry of the problem.

• Computations were done using the ASPECT code version 2.4.0. (Kronbichler
et al., 2012; Heister et al., 2017; Bangerth et al., 2021a, 2021b).

• Boussinesq approximation and temperature-dependent viscosity.
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Figure 3. Trench retreat velocity over time (measured in the center of
the subduction zone) for simulations with different slab width.

Trench retreat velocities

Effect of slab width: the effect of W on 𝑉𝑇 is weak.
𝑉𝑇 hardly varies more than 1 cm/yr when varying W
between 400 and 1000 km.
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Figure 3. Trench retreat velocity over time (measured in the center of
the subduction zone) for simulations with different slab width.

Figure 4. Trench retreat velocity over time (measured in the center of
the subduction zone) for simulations with different overriding plate
thickness.

Trench retreat velocities

Effect of slab width: the effect of W on 𝑉𝑇 is weak.
𝑉𝑇 hardly varies more than 1 cm/yr when varying W
between 400 and 1000 km.

Effect of overriding plate thickness: Significant
𝑉𝑇 decrease when increasing the OP thickness.
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Trench retreat velocities observed in nature: Observations show a lack of correlation
between W and 𝑉𝑇 but an inverse dependence of 𝑉𝑇 on OP thickness.

Figure 5. Trench retreat velocity against W and OP thickness for all subduction zones in Earth with W ≤ 1000 km.
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Trench geometry

    

 

   

 
  
 
 
 

             

      

        

 
  

 
 

    

 

   

             

 
  

 
 

    

 

   

             

 
 
  

 
 

    

 

   

             
 
 
  

 
 

    

 

   

             

 
 
  

 
 

    

    

    

 

   

   

   

 
  
 
 
 

             

      

         

 
  

 
 

    

    

    

 

   

   

   

             

 
  

 
 

    

    

    

 

   

   

   

             

 
 
  

 
 

    

    

    

 

   

   

   

             

 
 
  

 
 

    

    

    

 

   

   

   

             

 
 
  

 
 

• Models develop two types of trench geometries in the
center of the subduction zone depending on W: concave for
W ≤ 1000 km and “w”-shaped for W = 1200 km .

• Our model with W = 1200
km develops a “w”-shape for
much smaller W than any of
the previous studies not
using an OP (e.g., Chen et al.,
2022; Schellart et al., 2007;
Stegman et al., 2010; Strak &
Schellart, 2016).

Figure 6. Evolution of the trench for simulations with W = 600 km and W =1200 km.
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Trench geometries observed in nature

• Our models explain trench geometries of natural subduction zones of narrow to
intermediate widths.

Figure 7. Subduction fronts at present-day for the Gibraltar subduction system and the Hellenic subduction zone.
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1. The slab width has little effect on trench retreat velocities for narrow
subduction zones.

2. The overriding plate thickness is the main controlling factor on trench
retreat velocities for narrow subduction zones, with velocities decreasing
as the thickness increases.

3. Surrounding plates significantly affect trench kinematics.

Preprint available: Gea, P. J., Mancilla, F. d. L., Negredo, A., and van Hunen, J. (2023). Overriding
plate thickness as a controlling factor for trench retreat rates in narrow subduction zones. ESS
Open Archive. doi:10.22541/essoar.167979590.08120178/v1

Open to new ideas and collaborations, contact me at pedrog@ugr.es

https://essopenarchive.org/users/598340/articles/630961-overriding-plate-thickness-as-a-controlling-factor-for-trench-retreat-rates-in-narrow-subduction-zones?commit=5bdc22a3fa5cb0ed3b001fc87511030fc65d6815
mailto:pedrog@ugr.es
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