Arctic freeboards and snow depths from near-coincident CryoSat-2 and ICESat-2 (CRYO2ICE) observations during the winter 2020-2021 An examination across changing sea ice conditions

Renée Mie Fredensborg Hansen^{1,2,3}, Henriette Skourup¹, Eero Rinne², Knut Vilhelm Høyland³, Ioanna Merkouriadi⁴, Jack Christopher Landy⁵, and René Forsberg¹

¹DTU Space, Department of Geodesy and Earth Observation, The Technical University of Denmark (DTU), Kgs. Lyngby, Denmark ² Department of Arctic Geophysics, The University Centre in Svalbard (UNIS), ³Department of Civil and Environmental Engineering, Norwegian University of

Science and Technology (NTNU), Trondheim, Norway ⁴Arctic Research Centre, Finnish Meteorological Institute (FMI), Helsinki, Finland ⁵Department of Physics and Technology, The Arctic University of Norway (UiT), Tromsø. Norwav

- Along-track altimetry-derived snow depth estimates presented
- Negative correlation observed between CRYO2ICE and estimates from acoustic buoys
- Limited seasonal snow accumulation observed due to little increase in laser freeboard – further investigation needed

Summary

In the summer of 2020, CryoSat-2's orbit was aligned to periodically overlap with ICESat-2 to allow for near-coincident laser and radar altimetry (CRYO2ICE) over polar regions. Here, we examine the CRYO2ICE orbits acquired over sea ice for one winter season and evaluate the potential of estimating snow depth along the satellite track.

Background

- The difference in penetration between laser ($\lambda = 532$ or 1064 nm) or Ka-band ($\lambda =$ 1.1 - 0.75 cm) and Ku-band ($\lambda = 2.5 - 1.67$ cm), assuming Ku-band penetrates fully to the snow-ice interface, allows for determination of snow depth on sea ice, accounting for slower wave propagation speed through snow. Utilizing this, monthly snow depth estimates has been derived using a combination of CryoSat-2/SARAL (Guerreiro et al., 2016; Lawrence et al., 2018; Garnier et al., 2022) for Ku/Ka snow depths or CryoSat-2/ICESat-2 (Kwok et al., 2020; Kacimi and Kwok, 2022) for Ku/laser snow depths.
- However, with the expected launch of the dual-frequency CRISTAL mission in 2027, a mission requirement is determining snow depth at 25 km orbit segments. Here, CRYO2ICE provides an excellent opportunity to investigate this possibility with already available missions.
- However, CRYO2ICE observations have different configurations instrument characteristics and alignment restrictions, complicating the process of making the observations comparable.

Data and methods

- Winter season 2020-2021 CRYO2ICE orbits identified using <u>www.cs2eo.org</u> with specific search requirements.
- Freeboards from CryoSat-2 ($h_{f_{CS2}}$) with three re-trackers: ESA Baseline-D, threshold-first-maximum-retracker-algorithm at 50% (TFMRA50 from the Climate Change Initiative (CCI) project) and the log-normal re-tracker algorithm model (LARM), and ATL10 freeboards from ICESat-2 (h_{f IS2}) are used. ATL10 freeboards within a search radius of 3500 m are considered with an inverse-distance-
- weighting applied when computing CRYO2ICE ICESat-2 comparable freeboards. Snow depth is estimated as follows, where ρ_{s} is the bulk snow density:

$$h_{s} = \frac{I'f_{IS2}}{\eta_{s}}$$
, where $\eta_{s} = (1+0.51\rho_{s})^{1.5}$

Garnier, F., Fleury, S., Garric, G., Bouffard, J., Tsamados, M., Laforge, A., Bocquet, M., Fredensborg Hansen, R. M., and Remy, F. (2021) Advances in altimetric snow depth estimates using bi-frequency SARAL and CryoSat-2 Ka-Ku measurements, The CryoSphere, 15, 5483-5512, doi: 10.5194/tc-15-5483-2021, Guerreiro, K., Fleury, S., Zakharova, E., Remy, F., & Kouraev, A. (2016). Potential for estimation of snow depth on arctic sea ice from CryoSat-2 and SARAL/AltiKa missions. Remote Sensing of Environment, 186, 339-349. doi: 10.1016/j.rse.2016.07.013 Lawrence, I. R., Tsamados, M. C., Stroeve, J. C., Armitage, T. W. K., & Ridout, A. L. (2018). Estimating snow depth over arctic sea ice from calibrated due frequency radar freeboards. The Cryosphere, 12 (11), 3551–3564. doi: 10.5194/tc-12-3551-2018 Kacimi, S., & Kwok, R. (2022). Arctic snow depth, ice thickness, and volume from ICESat-2 and CryoSat-2: 20 e2021GL097448. doi: 10.1029/2021GL097448 Kwok, R., Kacimi, S., Webster, M., Kurtz, N., & Petty, A. (2020). Arctic snow depth and sea ice thickness from ICESat-2 and CryoSat-2 freeboards: A first examination. Journal of Geophysical Research: Oceans, 125 (3), doi: 10.1029/2019JC016008

Along-track freeboards and snow depth

- smoothing methods or rely only on a segment-based analysis.
- accuracy at 25 km segments \rightarrow orbit-segment analysis next.

(AMSR2) and reanalysis-based models (SnowModel-LG/SMLG v1 and v2). Grey lines indicated leads identified in Baseline-D L1b. Original freeboard observations and smoothed freeboard (with lowess filter) are shown.

Figure 4. Growth rates (monthly average) for winter season 2020-2021

Next steps

- increasing binning methodology examination)
- data with irregular sampling

• Radar observations are noisy. To limit the impact of noise, we apply a lowess filter (Locally Weighted Scatterplot Smoothing) with a fraction of 1/50 (based on qualitative comparison) to smooth with. ICESat-2 observations are generally smoother than original CryoSat-2 observations. Of the smoothed data, similar relations are observed along the track with some discrepancies at times – this is related the smoothing solution. Future work includes investigating other

• Compared with nearest-neighbouring points of daily snow depth composites (passive-microwave-derived using AMSR2 data (AMSR2) or evolving snow-model; SMLG v1 and v2), we see some similarities with SMLG v1/v2, whereas AMSR 2 is generally higher (Figure 1) – note the coarser resolution of the daily composites. • CRISTAL's mission requirement states snow depths must be available at high

- We compare with in situ observations acoustic buoys from AWI (**Figure 2**) for validation.
- Daily average buoy data is used and compared with CRYO2ICE
- Large increase in snow depth for buoys (Figure 3) with and
- correlations (**Table 1**).

Table 1. Statistics between AVI bubys and CRTOZICE data within 50 km, $\tau/2$ days.				
Re-tracker	Correlation	Root-mean-square-deviation (RMSD) [m]	Slope [m]	Intercept [m]
Baseline-D	-0.38	0.33	-1.07	0.62
LARM	-0.31	0.31	-0.82	0.59
CCI	-0.37	0.35	-0.96	0.57

- To compare with the mission requirement of CRISTAL (25 km), we average to orbit-segments of 25 km to comply with the CRISTAL requirement (Figure 5: CRYO2ICE tracks for winter 2020-2021). Growth rates (Figure 4) show a more comparable seasonal evolution over FYI, and no seasonal
- season (November) and decreases afterwards.

Figure 5. CRYO2ICE (C2I) snow depths for winter season 2020-2021

Identify and solve for the limited seasonal snow accumulation (ICESat-2 freeboards not

Smoothing/orbit-based segments: what is the best way forward? LOESS filter works differently depending on # observations, normal smoothing filters does not work well over

Assumptions: SMLG is the truth and full penetration to snow-ice interface – when is it valid? Overall differences over different ice regimes/products – distributions and specific patterns. Note the limitations due to significant incomplete and inconsistent data coverage.

15°E Figure 2. Buoy trajectories of four active

EGU

standing Student & Pl ate Presentation cor

snow depth buoys during the winter season 2020-2021. CRYO2ICE tracks shown from November (light blue) to April

25 km segments

evolution over MYI. Correlations (Figure 6) show a strong correlation in the beginning of the

reanalysis-based) and altimetry-derived averaged to orbit segments of 25 km.