POTSDAM INSTITUTE FOR CLIMATE IMPACT RESEARCH

Comparison of Methods for Learning Differential Equations from Data

Christof Schötz¹, Alistair White^{1,2}, Niklas Boers^{1,2,3}

cschoetz@pik-potsdam.de

¹Potsdam Institute for Climate Impact Research, ²Technical University of Munich, ³University of Exeter

What is this about?

- Basic research: learning ordinary differential equations
 (ODEs) from observational data
- Comparison of different Machine Learning methods
- 3 aspects of major interest:
- -Chaos: chaotic (√) vs non-chaotic (X) systems
- -Complexity: parametric (\checkmark) vs non-parametric (X)
- -Noise: noisy (\checkmark) vs noiseless (X) observations

Abstract Setup

Let $u \colon [0,T] \to \mathbb{R}^d$ solve the **ODE**

$$\dot{u}(t) = f(u(t)),$$

where $f: \mathbb{R}^d \to \mathbb{R}^d$ is **unknown** to the learning algorithm.

We **observe** this system at time $t_i \in [0, T]$,

$$Y_i = u(t_i) + \varepsilon_i$$
, $i = 1, ..., n$,

with noise ε_i (noisy) or $\varepsilon_i = 0$ (noiseless).

The learning algorithm sees $(Y_i, t_i)_{i=1,...,n}$ and estimates

- the future u(s), $s \in [T, T + S]$ (systems 1 and 2) judged by a *valid time* metric, or
- the function f itself (systems 3 and 4) judged by the L_2 -error.

Simulation Study

Compare methods on 4 systems, each with and w/o noise.

- Draw $f: \mathbb{R}^3 \to \mathbb{R}^3$ randomly.
- Observe u at **equidistant** times $t_i = i\Delta$.
- Optimize hyper-parameters for all 8 settings individually.
- Record SkillScore = $((v_{\text{method}} v_{\text{trivial}}) / (v_{\text{best}} v_{\text{trivial}}))_+$. 1 is best possible; 0 is as bad as / worse than a trivial output.
- Repeat each experiment 100 times.

Methods

Method	Description	cha par noi X√ X√ X√
Spline- Poly2	Cubic spline interpolation $+$ degree-2-polynomial regression	
Spline- Poly5	Cubic spline interpolation $+$ degree-5-polynomial regression	
Spline- Sindy	Cubic spline interpolation $+$ sparse degree-5-poly. regression	
Spline- Gp	Cubic spline interpolation $+$ Gaussian Process regression	
Gp-Gp	Gaussian Process regression + Gaussian Process regression	
ThnPlt- Gp	Multivariate spline regression $+$ Gaussian Process regression	
Random Features	Linear regression on 400 random features	
Esn	Echo State Network with reservoir size 400 and node degree 6	
Node	Neural ODE: train Neural Network $f_{ heta}$ so $\dot{u}=f_{ heta}(u)$ fits data	incomplete

System 1: Parametric, Chaotic

Lorenz 63

Parameters σ , ρ , β drawn randomly.

$$f(u) = \begin{pmatrix} \sigma(u_2 - u_1) \\ u_1(\rho - u_3) - u_2 \\ u_1u_2 - \beta u_3 \end{pmatrix}$$

n=5000, $\Delta=0.02$, T=100, for noisy: $\varepsilon_i \sim \mathcal{N}(0,0.1)$

System 2: Non-Parametric, Chaotic

Transformed Lorenz 63

Parameter functions $\tilde{\sigma}, \tilde{\rho}, \tilde{\beta} : \mathbb{R}^3 \to \mathbb{R}$ drawn randomly.

$$f(u) = \begin{pmatrix} \tilde{\sigma}(u)(u_2 - u_1) \\ u_1(\tilde{\rho}(u) - u_3) - u_2 \\ u_1u_2 - \tilde{\beta}(u)u_3 \end{pmatrix}$$

n=5000, $\Delta=0.02$, T=100, for noisy: $\varepsilon_i \sim \mathcal{N}(0,0.1)$

System 3: Parametric, Non-Chaotic

Degree 2 Polynomial

Out of the 30 coefficients of a $\mathbb{R}^3 \to \mathbb{R}^3$ degree 2 polynomial, select 5 randomly. Draw these 5 randomly; set others to 0.

m=20 trajectories with n=20 observations each, $\Delta=0.5$, T=10, for noisy: $\varepsilon_i \sim \mathcal{N}(0,0.05)$

System 4: Non-Parametric, Non-Chaotic

Gaussian Process

Draw random functions f by fitting a Gaussian process to randomly drawn points.

m=30 trajectories with n=20 observations each, $\Delta=1.5,\, T=30,$ for noisy: $\varepsilon_i\sim\mathcal{N}(0,0.2)$

