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Surface transport and the Global Drifter Program Diagnosing dynamics: spatially-varying statistics Surrogate modelling: drifter release experiment
Surface currents are responsible for the transport of bouyant material such as plankton, plastic and other We show examples of the statistics captured by the model. Figure 2 illustrates non- In Figure 5 we show results of a simulation of drifters initially distributed on a uniform longitude-latitude
pollutants. The Global Drifter Program (NOAA PhOD) has collected time series data from satellite-tracked Gaussianity in transition density; Figure 3 shows mean displacements as function of initial orid. Displacements for each drifter are drawn from the transition density independently at each time
drifting buoys (drifters) since 1969 [1]. These data have been used to estimate spatially varying statistics position; and Figure 4 shows a derived estimate of lateral diffusivity. step. Drifters are seen to cluster in subtropical gyres, as in [3].

such as mean velocity and diffusivity |2] and to build transition matrix models of drifter motion [3]. We

b
propose a new data-driven model — a type of probabilistic neural network — for the transition probabil- (2) ~1.21 (b) ~0.33
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ity density function (pdf) of drifters. The transition pdf provides a comprehensive description of drifter ~3.30 —2.51 o T
dynamics allowing for the simulation of drifter trajectories and the estimation of a wealth of dynamical —5.39 —4.70 (S | 7 AR
statistics without the need to revisit the raw data [4]. T, _6.88
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Transition probability density functions . 196
The transition pdf p(X,.1 | X,,) denotes the pdf for the position of a drifter at time ¢, given that it B | - 194d
was X, at time ¢,,. Assuming Markovianity, the transition pdf determines the evolution of a drifter’s pdf - 1082 :?w\ | - 1963
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Over large spatial and temporal scales the drifter pdf p(X,,) can represent the concentration of a buoyant Figure 2. Maps of the log transition density, log p(AX | X), for initial positions, X, (a) in the Gulf Stream,
tracer. and (b) adjacent to the Gulf Stream, derived from the MDN model with ¢,,11 — t, = 4 days. Yellow dots
indicate X.
Probabilistic neural networks
While standard neural networks model deterministic functions f(a), probabilistic neural networks repre-
sent parameters 8(X) for a conditional model p(Y | X) = p(Y ; 8(X)). We model the transition density 150
in the form p(AX | X). The parametric form p that we use is a Gaussian mixture distribution, 100
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with 3% o = 1. In this case 0 = {ay, p;, C;}L, — see Figure 1. L0
The parameters of the neural network, w, are optimised to maximise the likelihood of observed drifter s 0 1 2 5 10 15
trajectories, p <AX ; H(XO ; w)) Figure 5. Histograms of simulated drifters initially and after one, three, and ten years of evolution under the model,
—100 respectively.
Features
- e —150
- Provides estimates of a range of dynamical statistics simultaneously. Other applications
» Can be used to emulate drifter release experiments to study surface transport. | | | o N Many statistics of interest in fluid dynamics are described by conditional pdfs. Flexible probabilistic models
= Continuous in space representation — avoids the need to bin data. Figure 3. Mean of 4-day zonal displacement (km) as a function of initial position X can be used to infer these from data, following the approach demonstrated here. Some examples are:

« Flexible model — captures non-Gaussian statistics. L . L . .
= Multi-point Eulerian statistics: e.g. structure functions via p(du | r);

Hidden layers - Multi-point Lagrangian statistics: e.g. two-particle transition density p(Xﬁl, Xﬁl XD, X2
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Figure 1. Schematic of the probabilistic neural network used, known as a mixture density network [5]. Fioure 4. Scalar estimate of lateral diffusivity, & (m2s—1), following the recipe of Zhurbas and Oh [4] Journal of Geophysical Research: Oceans, vol. 107, no. L5, 2004. <EGU

Outstanding Student & PhD
candidate Presentation contest

MB is funded by the MAC-MIGS CDT (EPSRC). m.brolly@ed.ac.uk


https://arxiv.org/abs/2303.11480
mailto:m.brolly@ed.ac.uk

