Viktória Pipíšková ${ }^{1}$, Jan Světlík ${ }^{1,2}$, and Soham Basu ${ }^{1}$

1 Mendel University in Brno, Faculty of Forestry and Wood Technology, Department of Forest Ecology, Zemědělská 3, 61300 Brno, Czech Republic (viktoria.pipiskova@mendelu.cz) 2 Global Change Research Institute of the Czech Academy of Science, Bělidla 986/4a, 60300 Brno, Czech Republic

- Positions of trees were
(IFER, Czech Republic) (IFER, Czech Republic).
ed at breast height from each
tree species at the site - a total of 80 samples.
- Cores were measured and cross-dated by the software TSAP-Win.
- The radial increment of target trees with respect to the competition of the 10 nearest neighbouring trees was evaluated for the most affected year 2018.
- The competition indexes ($C i$) were calculated as the ratio between the DBH of the target tree (Di) and of the competitor (Dj) divided by the distance (Rij) between them (Hegyi, 1974):

$$
\mathrm{C}_{i}=\sum_{j} \frac{D_{j} / \mathrm{D}_{i}}{\mathrm{R}_{i j}}
$$

- The resistence, resilience and recovery of target trees wer calculated for the most affected year 2018 (Lloret et al., 2011):
- Resistance ($R t$) - growth reduction during the extreme year $R t=\frac{D r}{\text { PreDr }}$,
- Recovery ($R c$) - growth response after the extreme year

$$
R c=\frac{P o s t D r}{D r},
$$

- Resilience (Rs) - capacity to reach pre-disturbance growth Rs $=\frac{\text { PostDr }}{\text { PreDr }}$,
where PreDr, Dr, and PostDr indicate growth performance before, during and after disturbance/drought (low-growth period).
- Data were administered and analysed in MS Excel 2010 using the general worksheet function. Analysis of variance (ANOVA) was used (Statistica 12).

High recovery of larches after the extreme conditions of 2018 were observed in all variations of mixed stands. On the other hand, larches in a monoculture ($\mathrm{D}-$ Larch) performed the lowest growth in the period 2019-2021 which can be caused by their delayed reaction to stressful conditions.
d) EVALUATION OF RESILIENCE

After 2018, larches growing with beeches (A - Larch) performed the highest wood increment compared to the other larches sites. Spruces and beeches also reached their previous (20152017) increments. The resilience was high in all research sites, so we can assume a positive effect of larch presence.
V. CONCLUSION

We determined that the larches are not significantly influenced by competition with their neighbours. Furthermore, larches in monoculture performed the highest resistance, and delayed reaction to stressful conditions. Larches growing in
resilient with superior recovery.

Fig. 5: Linear regression of competition indexeses (x-axis; increments $(y-a x i s, ~ m m$) of the most affected year 2018 .

In 2018, the tree species exhibited a different growth response under the same climatic conditions. Linear regression of competition indexes and radial increments during the most afcred years 2018 (fig. S) showed decasing tree growisingly this does not occur in larches growing in mixtures. The result showed that larches respond to competition only in the monoculture.
b) EVALUATION OF RESISTANCE

Tree resistance to environmental conditions in 2018 was lower than a value of 1 for all spruces and beeches. Larches growing with beeches (A - Larch) reached the same increment as before the affected year and surprisingly, larches in monoculture (D -Larch) grew even better. Beeches growing in the triple mixed stand (cstand (A-Beech) The lowest resistance performed spruces in the triple mixed stand (c-spruce).

