Radiative Effect of Recent Changes in PM_{2.5} Pollution over China and local and Remote Climate Impacts Yue Chen¹, Stephen Arnold¹, Steven Turnock^{2,3}

- 1. Institute for Climate and Atmospheric Science, School of Earth and Environment, University of Leeds, Leeds, UK 2. Met Office Hadley Office, Exeter, UK

Contact: ee21yc@leeds.ac.uk

- recent years.

- CEDS old.
- (**MEIC**), v1.3
- Plan (FYP)

and 2016.

- Largest aerosols reduction over Eastern China.

3. University of Leeds Met Office Strategic (LUMOS) Research Group, School of Earth and Environment, University of Leeds, Leeds, UK

Anthropogenic Aerosol Emissions		
BC	SO ₂	Meteorology
2008	2008	2012 -2014
2016	2016	
2016 only over China	2008	
2008	2016 only over China	

resources.

Met Office UNIVERSITY OF LEEDS

Concentration

China had the largest reduction in PM_{2.5} concentration between 2008 and 2016, which is mainly caused by the reduction in sulphate (49.04%) and Organic Carbon (OC) (41.25%).

Temperature Response

I Latitude Bands	BC	Sulphate	
60° - 90°	-2.45 ± 0.47	8.68±0.49	
28° - 60°	-7.78 ± 0.52	59.64±3.77	
0 - 28°	-0.12 ± 0.33	9.34±0.43	

Table 2: Temperature response of Changes in all-sky China BC and SO₂ SW IRF (units: mK) for each latitude bands in North Hemisphere (Shindell and Faluvegi (2009)).

• The temperature responses are opposite due to China's BC and

• Mid-latitudes experienced the greatest warming, while high-latitudes and low-latitudes experienced much smaller warming.

Conclusion

• $PM_{2.5}$ (both BC and SO_2) emissions over China decreased

• Reduction in PM_{25} over China has larger local RF, but is also important for remote climate changes, especially the NPO.

References

• Shindell, D. and Faluvegi, G.: Climate response to regional radiative forcing during the twentieth century,

Acknowledgements

We acknowledgement the Met Office for the model and computational