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The identification of cycles in periodic signals is a ubiquitous problem in time series analysis. Many real-world
data sets only record a signal as a series of discrete events or symbols. In some cases, only a sequence of
(non-equidistant) times can be assessed. Many of these signals are furthermore corrupted by noise and offer
a limited number of samples, e.g., cardiac signals, astronomical light curves, stock market data, or extreme
weather events.
We propose a novel method that provides a power spectral estimate for discrete data. The edit distance

is a distance measure that allows to quantify similarities between non-equidistant event sequences of unequal
lengths. However, its potential to quantify the frequency content of discrete signals has so far remained
unexplored. We define a measure of serial dependence based on the edit distance which can be transformed
into a power spectral estimate (EDSPEC), analogously to the Wiener-Khinchin theorem for continuous signals.
The proposed method is applied to a variety of discrete paradigmatic signals representing random, cor-

related, chaotic, and periodic occurrences of events. It is effective at detecting periodic cycles even in the
presence of noise and for short event series. Finally, we apply the EDSPEC method to a novel catalogue
of European atmospheric rivers (ARs). ARs are narrow filaments of extensive water vapor transport in the
lower troposphere and can cause hazardous extreme precipitation events. Using the EDSPEC method, we
conduct the first spectral analysis of European ARs, uncovering seasonal and multi-annual cycles along dif-
ferent spatial domains. The proposed method opens new research avenues in studying of periodic discrete
signals in complex real-world systems.

Many dynamical processes exhibit characteristic
periodic time scales, which can be assessed by
power spectral density estimation. This is the
usual and standard procedure of time series anal-
ysis, where the data is, in general, equally sam-
pled and follows a more or less continuous nature.
However, in specific applications, only events are
observable, which could be irregularly occurring
activities or extreme events. Identification of
cyclical behaviour in such kind of data is diffi-
cult. We propose a novel but simple tool to esti-
mate the power spectral density in such discrete
data. This method can be applied on symbolic
sequences, discrete data, or (extreme) event se-
ries.

I. INTRODUCTION

The estimation of the power spectral density (PSD) of
cyclical signals is an important field in signal and data
analysis1–4. However, the estimation of PSD from dis-
crete data, such as symbolic time series or event series,
is difficult. A time series can generally be denoted by a
set of ordered pairs {(ti, xi)} of time ti with ti+1 > ti
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and corresponding data value xi; and with sampling in-
dex i. PSD estimation becomes even more challenging,
if instead only the time points of the events are available
(i.e., in contrast to the time series definition above, we
have only a set of time points {ti} which indicate the
presence of an event; time series analysis tools usually
handle only data in the form {(ti, xi)}).
Analysing discrete or event series is of general inter-

est in many scientific fields. For example, heart beats
are discrete events, described as the R-waves in an elec-
trocardiogram (ECG). Pathologic states cause signifi-
cant changes in the beat-to-beat intervals, which can
be used to diagnose or even predict life-threatening car-
diac events5,6. Specific methods designed for discrete
time series analysis are available for classifying cardi-
ological signals, based on symbolic dynamics and ordi-
nal patterns7,8. Brain activity is controlled by the firing
of neurons, occurring as sequences of events, also called
“spike trains”9. The synchronization between firing neu-
rons is the base of transmitting information through the
nervous system, but can also cause serious pathologi-
cal states, e.g., seizures10,11. Symbolic dynamics is a
promising tool to study seizure activity using electroen-
cephalographic measurement12. In climatology, a pro-
found understanding of extreme weather events such as
droughts, floods or heavy precipitation is becoming more
and more crucial13,14. Detrimental societal and techno-
logical impacts of single events and cascades of compound
weather extremes are projected to increase on a warm-
ing planet. In this context, atmospheric rivers (ARs)
receive increasing interest as they can trigger extreme
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rainfall15. Frequency and intensity of AR events are
controlled by the Madden-Julian Oscillation, the Quasi-
Biannual Oscillation, the El Niño/ Southern Oscillation
(ENSO), and the Pacific Decadal Oscillation16,17. Ex-
treme rainfall and river flood event series are studied
with event synchronization, edit distance, and complex
networks to shed light on their serial dependency and spa-
tial propagation18,19. Discrete data also appears in engi-
neering, e.g., in the investigation of how weather condi-
tions affect car crashes, using integer-valued autoregres-
sive models20. In the analysis of stock markets, iden-
tification of regularities in the occurrence of trades in
the order book or (ultrafast) extreme events is a com-
mon research objective21,22. The temporal structure,
heterogeneity, and serial dependencies in financial data
are studied using response functions, spectral analysis,
and recurrence plots23–25. Communication between hu-
man individuals via social media platforms is intricatedly
linked to recurrence of periodic social events and is, for
instance, studied by means of periodic patterns in tweets
on Twitter26. Finally, detection of periodicities in irreg-
ular and event-like time series is also one of the main
challenges faced in computational astrophysics27,28.

Although discrete or (extreme) event time series are
ubiquitous in many scientific disciplines, the study of
cyclicities within these events is, to our best knowl-
edge, still in its infancy. Potential methods would be
Walsh transform29–31 and spectral analysis using the
Haar wavelet32–34. The Walsh transform provides a spe-
cific set of discrete basis functions consisting of binary
sequences of different shape and length. Therefore, the
interpretation of a plain Walsh spectrum is not straight-
forward. Nevertheless, Walsh transforms are recently re-
ceiving more interest, e.g., in combination with machine
learning tools for classification purposes35. Applications
of the Haar wavelet to non-equidistant and event-like
data have so far remained sparse36. While not providing
a PSD-like framework, another family of methods based
on line-search algorithms, phase folding and maximum-
likelihood estimation aims at finding periods in event
series37. Finally, some methods characterise event time
series based on inter-event times7,38.

Haar wavelet and Walsh power spectrum require time
series in the form of ordered pairs {(ti, xi)}. Walsh
power spectrum even needs equidistant time series (i.e.,
ti+1 − ti = const.). However, series of (extreme) events,
e.g., extracted from data by thresholding and further con-
sidering only the times of these events ti, consist only of
the set of these time stamps {ti}. Alternatively, if as-
signing corresponding values to get an (extreme) event
time series {(ti, xi)}, it would be one which is strongly
non-equidistant (i.e., ti+1 − ti ̸= const.) or, as a fur-
ther alternative, to ensure equidistant sampling, it would
consist mainly of zero values. Most methods of time se-
ries analysis are limited for such kind of data. Specific
methods considering the extreme nature of discrete data
points have their roots in neuroscience39–41. The main
purpose of these methods is testing coincidence or syn-

chronization between event series. Among these methods
are event synchronization40, edit distance39, and coinci-
dence analysis42. Event synchronization has been ap-
plied in climate science to construct complex networks
to investigate the spatio-temporal dynamics of extreme
rainfall18,43. Edit distance has been applied in different
applications and in combination with recurrence analysis,
to study serial dependence19,24,44 and to allow analysing
non-equidistantly (palaeoclimate) time series45,46.
We propose a novel power spectral analysis for discrete

and event series {ti} based on the edit distance metric
(modified Levenshtein metric39,47). This method allows
to estimate a power spectrum directly from the event
sequence without interpolation.
In Sect. II we introduce the edit distance and the power

spectral estimation based on this metric. We illustrate
this approach in Sect. III on selected paradigmatic ex-
amples of random, periodic, and chaotic event sequences.
Finally we apply it on atmospheric rivers in Europe to
find typical recurring cycles in Sect. IV.

II. METHOD

For the estimation of a power spectrum we propose
a combination of a similarity measure for discrete time
series (applied as an auto-correlation measure of this dis-
crete time series) and the Wiener-Khinchin theorem. We
use the edit distance metric as a similarity measure. In-
stead of the standard definition of a time series as ordered
pairs of time and value {(ti, xi)}, we consider to have
only the time stamps of the discrete or extreme events
{ti}, finally forming a sequence S = {t1, t2, . . . , tN} of N
events.

A. Edit distance

The edit distance quantifies the dissimilarity between
two sequences Sa and Sb of (discrete) symbols by means
of how much it would minimally cost to transform Sa

into Sb. It was initially introduced in computer science
(Levenshtein metric) where the two sequences are usu-
ally identified with two strings or words47. The opera-
tions that are typically allowed include inserting a sym-
bol, deleting a symbol, and shifting two symbols (Leven-
shtein metric would consider addition, deletion, and re-
placement). The edit distance offers the advantage that
it neither requires sequences of equal lengths nor equally
displaced symbols. In practise, measuring similarities
with the edit distance is, thus, not limited to strings
but it has been applied to marked point processes24,39,
extreme events19, spatial trajectories,48 and irregularly
sampled time series46,49. Recent modifications to the
edit distance include accounting for a saturation of shift-
ing costs given a large temporal displacement between
events19 and a correction method for non-stationary sam-
pling rates50. Another recent study already hints at the
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potential of the edit distance to reveal scale-dependent
variability in the context of recurrence analysis51.
Here, we consider sequences of binary symbols with

no continuous amplitude. These could, e.g., represent
spike trains or series of time stamps of the occurrence
of extreme events. Hence, we refer to the symbols of a
sequence as events in the following, with sequence S of
N events.

The edit distance between two sequences Sa and Sb of
Na andNb events is computed by identifying the transfor-
mation path with minimum costs from all possible trans-
formations between Sa and Sb:

D(Sa, Sb) = min

{
ΛS (Na +Nb − 2|C|)︸ ︷︷ ︸

adding and deleting

+

∑
α,β∈C

Λ0

∥∥∥t(a)α − t
(b)
β

∥∥∥︸ ︷︷ ︸
shifting

} (1)

with cost parameters ΛS and Λ0; Na and Nb the number
of events in Sa and Sb; C the set of events that are shifted,
i.e., α, β ∈ C; and |C| the cardinality of the set C (i.e., the
number of events which are shifted). The cost param-
eters for deletion/insertion ΛS and the cost parameter
for shifting Λ0 have to be selected to balance between
deletion/insertion and shifting of events. For the sake of
simplicity, we can set ΛS = 1 and adjust Λ0. In previous
work we found an appropriate choice for Λ0 by fixing it
to the inverse average time interval between all events49

Λ0 =
M

T
(2)

with the total number of events M = Na + Nb. As
mentioned before, the choice of cost parameters deter-
mines whether cost computation is carried out in a bal-
anced way. If the ratio Λ0/ΛS is chosen too high, dele-
tion/insertion will always be prefered against shifting
(and vice versa), yielding inadequate values of the edit
distance.

B. Power spectral estimate

Given a finite length, discrete-time (but continuous-
amplitude) time series {(ti, xi)}, the power spectrum is
given by the squared absolute value of the signal’s Fourier
transform

Sx(f) =
1

N

∣∣∣∣∣
N−1∑
i=0

xie
−j2πfi

∣∣∣∣∣
2

(3)

with the discrete time index i, frequency f , length of the
signal N , and the imaginary unit j. Provided the time
series is wide-sense stationary and the autocorrelation

Rx(τ) =

N−1−τ∑
i=0

xix
∗
i+τ (4)

of the time series is integrable
(∑∞

τ=−∞ |Rx(τ)| < ∞
)
,

the Wiener-Khinchin theorem states that the time se-
ries’s autocorrelation and power spectral density are di-
rectly linked

Sx(f) =

∞∑
τ=−∞

Rx(τ)e
−j2πfτ . (5)

In practise, only a limited number of time delays τ is as-
sessable due to the finite length of the time series, grant-
ing validity of the integrability assumption.
We use this relationship for a heuristic definition of a

novel power spectral estimate for discrete signals, e.g.,
event series as discussed in Sect. II A. Using the edit
distance, Eq. (1), we define the edit distance-based auto-
correlation function (EDACF) for event series

Redit
S (τ) = 1− D̃ (S, S(τ)) (6)

with D̃(S, S(τ)) the normalized edit distance between
the event series S and its shifted copy S(τ) shifted by a
time delay τ . The normalisation of D limits Redit

S into
the range [0, 1] and is performed by dividing D by the
maximum transformation cost Dmax. Dmax is the larger
value of the edit distance between S and a completely
empty sequence and the edit distance between S(τ) and
a completely empty sequence. This is equivalent to the
Hamming distance of the event series and an empty event
series, multiplied by the deletion cost parameter ΛS.
Applying the Wiener-Khinchin theorem to the (z-

normalized) EDACF, Eq. (6), we obtain a power spectral
estimate for discrete signals (EDSPEC)

Sedit
S (f) =

∞∑
τ=−∞

RS(τ)− ⟨RS(τ)⟩
std(RS(τ))

e−j2πfτ (7)

(where ⟨·⟩ is the arithmetic mean [but median would also
work] and std(·) is the standard deviation).
A technical note needs to be added to the computation

of this power spectral estimate: in the analysis of binary
event series, events are usually recorded just by their time
instance, time stamp {ti}. It is therefore sufficient to add
the time delay τ to all time instances in order to shift the
event series against itself. This, however, results in non-
overlapping segments at the beginning and end of the
event series when computing Redit

S (τ) for some specific
time delay τ . In order to not include the transformation
costs that solely result from the transformation of the
non-overlapping events in the numerical computation, we
prune the shifted event series to their largest intersection.
The selection of the considered maximum time delay will
change the lowest assessible frequency resolved by the
power spectral estimate. While a large maximum value
of τ allows for studying longer cycles, the length of the
overlap shrinks and introduces undesired effects such as
spectral leakage. We thus recommend to carefully select
this parameter based on the number of observed events
and research question at hand.
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III. PARADIGMATIC EXAMPLES

We illustrate the proposed EDSPEC by power spec-
tral analysis of selected paradigmatic example systems
(Fig. 1). In particular, we consider sequences with events
of random (Fig. 1A), periodic (Fig. 1B), stochastic with
serial dependence (Fig. 1C), and chaotic (Fig. 1D) oc-
currences. For each example, we generate N = 1, 000
events over a time span of T = 10, 000 arbitrary time
units (a.u.). For the examples studied here, the consid-
ered maximum time delay τ is chosen as τ = T/10. For
evaluating the significance of the potentially detected pe-
riodicities, we perform a surrogate based statistical test.
We generate n = 100 surrogate event series by drawing
N time instances between 0 and T with equal probabil-
ity. The corresponding null-hypothesis is the absence of
any non-stochastic/periodic pattern that controls the se-
quence of events. The 95% -quantile of spectral power for
each frequency from the surrogate ensemble is then used
as the respective 95% -confidence level.

A. Random sequence

First, we generate a random sequence of events by
drawing exponentially distributed waiting times between
consecutive events (Fig. 1A). The resulting process is a
Poisson process and is, e.g., used as a Markovian model
for arrival of costumers in a store52. The EDACF rapidly
declines to a value close to zero, reflecting vanishing se-
rial dependence as it is expected for a Poisson process
(Fig. 1A). The EDSPEC follows a power law over two
orders of magnitude. No significant frequencies exceed
the 95%-confidence interval for the studied Poisson pro-
cess, confirming the absence of any periodicities in this
event series.

B. Periodic sequence

The opposite is expected for a periodic event series.
We generate an event series of 1,000 equally spaced events
with a frequency of ω = 1/10. The resulting EDACF is
strictly periodic (Fig. 1B). Consequently, the EDSPEC
gives the expected result of a sharp peak at a frequency
of f = ω, exceeding the 95%-confidence interval. The ob-
served spectral leakage is similar to what is found with
standard power spectral density when it is computed for
a monochromatic sinusoidal with a rectangular window
function. Aliases of the original frequency can be identi-
fied at (positive) integer multiples of ω. Spectral power
below ω is constant.

C. Stochastic sequence with serial dependence

We next study a stochastic sequence of events with
non-zero serial dependence, based on an autoregressive

process of first order (AR(1)-process, Fig. 1C). First, a
sample of a regular AR(1)-process is generated:

xi = axi−1 + ξi, x0 = 0 (8)

with standard-normally distributed random numbers ξi
and an autoregressive coefficient of a = 0.9. Next, we
shift all xi-values to the positive domain (xi → x̃i : xi −
min{xi} > 0) to finally use them as serially correlated
inter-event times:

ti = ti−1 + kxi−1, t0 = x̃1 (9)

The constant k is chosen such that, like for the other
studied systems, we obtain N = 1, 000 events over a time
span of T = 10, 000 a.u. Such a process could model a
scenario where events occur in a clustered or cascade-like
fashion.
For the first 100 delays, the EDACF declines to a value

slightly below 0.5. On top of this decline, we observe
small oscillations. The corresponding EDSPEC exhibits
higher spectral power than expected from a random null-
model for the lowest frequencies and for a band of higher
frequencies around f = 1/10. In the scaling region up
to f = 1/20, scaling is more steep than for the random
event series. The serial dependence in the serially corre-
lated event series does consequently not result in sharp
significant frequencies (as expected), but gives rise to sig-
nificantly high spectral power in a broader, but limited
band around the average time interval between consecu-
tive events. For event series with a unimodal distribution
of inter-event times, this average sampling interval could
effectively be understood as a cycle. This is due to the
fact that inter-events times center around this preferen-
tial interval, in contrast to the exponentially distributed
inter-event times in Fig. 1A.

D. Chaotic sequence

Finally, we generate an event series from a chaotic time
series. To this extent, we compute the x-component of
the Lorenz system53

dx

dt
= σ(y − x)

dy

dt
= x(ρ− z)− y

dz

dt
= xy − βz

(10)

with σ = 10, ρ = 28, β = 8/3 (chaotic dynamics). We fix
an integration time of ∆t = 0.1 and generate 10,000 val-
ues (after discarding transients) with initial conditions
x(t = 0) = 0.0, y(t = 0) = 1.0, z(t = 0) = 1.05. The
x-component is transformed into an event series by iden-
tifying each local maximum with an event (Fig. 1D). We
only extract 1,000 local maxima and rescale the respec-
tive time axis of these events such that it covers a time
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FIG. 1. Paradigmatic examples of event series: (A) random, (B) periodic, (C) autoregressive, and (D) chaotic events. For each
example, three panels show an excerpt of the event series (up to t = 500 a.u., black dots), an excerpt of the EDACF (blue) and
the EDSPEC (black) (from top to bottom). The respective 95% -confidence levels are shown in orange.

span of T = 10, 000 such that it aligns with the other
examples. As expected, the EDACF exhibits non-zero
serial correlation which is even slightly higher than for
the autoregressive event series. We find a broad band of
significant frequencies above f = 1/10, likely reflecting
the presence of many unstable periodic orbits. In the
scaling region up to f = 1/20, the slope of the EDSPEC
is less steep than for the random event series.

E. Influence of noise and number of events

In the analysis of real-world event series, it is common
to find considerable uncertainty in the timing of events.
This uncertainty can, for example, be represented by jit-

ter around the true time instance of an event. The im-
pact of this effect on the estimation of the proposed edit
distance-based power spectrum can be investigated by
superimposing observational noise onto an event series.
As the proposed method is predominantely designed to
identify periodicities in event series, we generate a peri-
odic event series with two distinct frequencies ω1 = 1

20

and ω2 = 1
12.7 (i.e., frequencies are not integer multiples

of each other). Another challenge in the study of obser-
vational event series is that only a low number of events
can be recorded, e.g., due to constrains in the measure-
ment procedures. In order to test the sensitivity of our
method against the presence of observational noise and
shortness of event series, we generate two samples of this
periodic event series, one with 130 and the other with
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FIG. 2. (A, C) Regular PSD and (B, D) EDSPEC for a periodic event series with two frequencies ω1 and ω2 (cyan and purple
markers). Black lines show the noise-free case, orange lines show a single realization with superimposed noise of relatively high
strength (σ = 0.5). Peaks can be more clearly distinguished for the longer event series (N = 130, A/B) than for the very short
event series (N = 20, C/D).

only 20 events between 0 and T = 1, 000 a.u. Due to
the short event series lengths, we set a maximum time
delay of τ = T/2 in order to still assess lower frequen-
cies. To establish a comparison with a typical alterna-
tive method, we also compute the regular power spectral
density (PSD) of the event series using the Fourier pe-
riodogram of the binary event series (Fig. 2). Overall,
the proposed EDSPEC generates more distinct peaks in
presence of noise and deteriorates less rapidly when the
number of events is reduced.

In absence of noise, both the regular PSD and the
EDSPEC effectively identify both frequencies as distinct
peaks (Fig. 2A/B, black curves). Additional peaks can
be found at integer multiples of each frequency as well as
at integer multiples of the sum and difference of them. If
we crop the event series such that there are only N = 20

events, both peaks are still visible but become harder to
delineate (Fig. 2C/D, black curves).

Next, we superimpose normally distributed noise
N (0, σ∆) onto the event series with noise strength σ the
average time interval ∆ between consecutive events. It
appears that the EDSPEC gives visually more convinc-
ing peaks at the expected frequencies for relatively high
noise strength σ = 0.5 (Fig. 2, orange curves). To sys-
tematically study the noise sensitivity of our method, we
increase σ ∈ [0, 1] and obtain the regular PSD and ED-
SPEC for 500 distinct noise realizations that are super-
imposed onto the periodic event series. As a quantitative
measure of peak quality, we compute the prominence of
each of the two peaks by computing the vertical distance
between the peak height and the height of its baseline.
The height of each baseline is estimated by identifying
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FIG. 3. Sensitivity of the EDSPEC (black) against noise and shortness of event series, as compared to the regular PSD (blue).
A single periodic event series with two frequencies ω1 (A) and ω2 (B) is generated and superimposed with noise of varying
strength σ. For each computed regular PSD and EDSPEC, prominence of peaks is estimated. Averages over all realizations
are shown as thick lines, EDSPECs for single realizations are shown by shaded gray lines. Solid (dotted) lines show the results
of this analysis for N = 130 (N = 20).

the closest (local) minimum value of spectral power in
proximity of the peak. Consequently, we obtain two val-
ues of peak prominence for each noise strength (ω1 and
ω2). We normalize both peak prominence curves sepa-
rately for the two methods to their respective value in
the noise-free case (σ = 0). We do the same for the
shorter event series.

The identification of both frequencies ω1, ω2 deterio-
rates considerably more slowly for the proposed EDSPEC
than for the standard periodogram (Fig. 3). The promi-
nence of the peak that is associated with the lower fre-
quency ω1 is on average more easy to detect than the
one for ω2. Interestingly, small amounts of noise (up to
30%) seem to enhance prominence of the peak associated
with ω1 when we use the EDSPEC method. The valid-
ity of this finding will, however, most likely depend on
the selected measure of peak prominence. In the study of
very short event series (N = 20, black dotted lines), peak
prominence for detecting both frequencies is reduced by
about 1/5 for the EDSPEC method, i.e., roughly propor-
tional to the reduction in length as compared to N = 130
(black solid line). While this reduction is certainly signif-
icant and also visually hampers detection of peaks espe-
cially in the presence of noise (Fig. 2D), the traditional
PSD reveals considerably stronger deterioration in peak
prominence for very short event series (Fig. 3, blue dotted
line). Finally, distinct noise realizations can allow con-
siderably better or worse peak detection, as indicated by
the shown peak prominence curves for single realizations
(gray lines).

Overall, we find that the proposed EDSPEC is less sen-
sitive to timing jitter/observational noise than the regu-

lar PSD when applied to a simple periodic event series
with two frequencies. The prominence of peaks deterio-
rates less strongly when the number of events is reduced.
This should be of high relevance for sparse and noisy
event series obtained from observational data. The ro-
bustness of other important properties beyond peak de-
tection, such as spectral scaling, should be investigated
in future studies.

IV. APPLICATION TO EUROPEAN ATMOSPHERIC
RIVERS

Atmospheric rivers (ARs) are narrow filaments of ex-
tensive water vapor transport in the lower troposphere.
They can transport moisture for thousands of kilome-
ters, predominately from the tropics towards the mid-
latitudes15. Their life times can range between a few
hours and several days. Contrasting common beliefs,
ARs represent the largest “rivers” on Earth as they on
average transport more than twice the amount of fresh-
water of the Amazon River54. While some recent studies
hint at alternative possible origins of ARs, most ARs are
associated with the front of an extratropical cyclone55.
Low-intensity ARs provide vital amounts of freshwater
and rarely result in heavy precipitation events. On the
other hand, high-level ARs can cause detrimental im-
pacts, including floods and high economic damage, when
they land-fall or ascent along an orographic barrier.
In Europe, links between ARs and heavy precipita-

tion events have recently started to attract attention56,57

(similar to research of ARs at the American west coast58).
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FIG. 4. (A) Monthly-resolved time series of AR categories in five distinct European domains between 1979-2019. (B) Map of
Europe, showing the five spatial domains: (1) Iberian Peninsula, (2) France, (3) the UK, (4) southern Scandinavia and the
Netherlands, (5) northern Scandinavia. Blue markers indicate landfalling ARs in the studied AR catalogue (from which we
focus on the ones that fall into the marked domains only). Some ARs seem to landfall over the ocean which is due to smaller
islands that are not indicated here.

The frequency of ARs and related heavy precipitation
events in Europe is projected to increase due to enhanced
atmospheric moisture caused by recent climate change,
whereas considerable uncertainties exist59. Impact by
high-category ARs is regionally heterogeneous over Eu-
rope and likely linked to regional presence of orographic
barriers. Fall and winter have been identified as the sea-
sons where most strong ARs occur, indicating the pres-
ence of a seasonal cycle in AR occurrence56. Further-
more, AR frequency in northern and southern Europe
has been found to correlate with the phase of the North
Atlantic Oscillation (NAO)56.

Here, we study periodic cycles in the occurrence of
European ARs between 1979 and 2019 by means of the
proposed power spectral measure. To this extent, we
track European ARs and regard the final (continental)
position along their track as an event, as the termination
of an AR potentially triggers rainfall (“landfalling” AR).
Detection of ARs is based on localizing anomalous atmo-
spheric transport of moisture. Many approaches track
ARs by defining a threshold that identifies local anoma-
lies in integrated vapor transport (IVT). Such approaches
effectively presume stationary atmospheric moisture lev-
els and often exclude low-level ARs. Here, we instead

employ an AR-detection framework (ARtracks60) based
on global ERA5 reanalysis data that utilizes image pro-
cessing techniques (using the IPART algorithm61). We
implement the most widely used scale that characterizes
European ARs based on their strength and persistence57

to distinguish five categories of ARs. While ARs of cate-
gories 1 and 2 are predominately beneficial, ARs of cate-
gories 4 and 5 often entail hazardous heavy precipitation
events; category-3 ARs rank in between.

First, we generate the European AR catalogue using
the ARtracks algorithm. The used parameters can be
found in the documentation of ARtracks and align with
standard calibration of the IPART algorithm61. As an
intermediate result, we obtain a catalogue of (uncatego-
rized) ARs along with detailed AR properties, including
unique AR identifiers and AR strength. To generate the
AR catalogue, ERA5 reanalysis data set is re-gridded to
a temporal resolution of six hours and a spatial resolu-
tion of 0.75◦ × 0.75◦. Next, we apply a set of additional
selection criteria to this AR catalogue and categorize ev-
ery landfalling AR. A more detailed description can be
found in App.A. Based on the resulting filtered and cat-
egorized AR catalogue, 65.5% of days between 1979 and
2019 have at least one active AR in the covered spa-
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FIG. 5. Spectral power estimates for European ARs in the five spatial domains (top: south, bottom: north), computed with
the proposed EDSPEC method (black). (A–E) EDSPEC for low-category (≤ 2) ARs and (F–J) EDSPEC for (moderate to)
high-category (≥ 3) ARs. 99.99% confidence levels based on 1000 random surrogates for each event series are shown in orange.
Pronounced seasonal cycles that can clearly be identified visually are marked by blue circles.
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tial region (Fig. A1 and Fig. 4B). We identify various
hot spots of landfalling ARs along the European west
coast, such as the Iberian Peninsula, the UK, and Scan-
dinavia (Fig. A1). In the Atlantic, Greenland as well as
some islands attract landfalling ARs. On the other hand,
we also identify landfalling ARs along the Mediterranean
coast of Italy. For 7.1% of all days, there is a landfalling
AR which we identify with an AR event. For by far the
most ARs that are studied here, the final landfall loca-
tion is mostly covering the European continent (Fig. A2,
gray bars). Only few AR tracks terminate predominately
over Africa, Asia, or North America (but still exhibit a
European contribution). Most European ARs are poten-
tially beneficial as they are assigned to category 1 or 2
(Fig. A2, colored bars).

We generate event series from the filtered and cate-
gorized AR catalogue by both temporally and spatially
integrating ARs. ARs are integrated onto a monthly time
axis by selecting the highest category AR for each month.
For the spatial integration, we largely follow the spatial
domains oriented along three reference meridians as de-
fined in62: we distinguish between the (1) Iberian Penin-
sula, (2) west coast of France, (3) the UK, (4) south-
ern Scandinavia and the Netherlands, and (5) northern
Scandinavia (Fig. 4B). We only extend the latter domain
(northern Scandinavia, longitudes: 4.25◦ to 14.25◦) to
include more AR events for sufficient spectral estimates.
Each monthly and domain-specific time series of AR cat-
egories can be regarded as a symbolic sequence with inte-
ger values (symbols) between 1 and 5 (Fig. 4A). Most (in-
tegrated) landfalling AR events are identified along the
Iberian Peninsula and northern Scandinavia (Fig. A3).
Especially the studied domains of France, UK, and south-
ern Scandinavia exhibit an overproportionally high num-
ber of category-5 ARs whereas northern Scandinavia ex-
hibits the most regular distribution of AR categories.

For the spectral analysis, we only distinguish between
low-category (category < 3) and (moderate to) high-
category (category ≥ 3) ARs. For each of these two
groups, we obtain a single event series, indicating the
occurrence of a low- or high-category AR at times {ti}.
We chose the considered maximum time delay as τ = 30
years to include decadal frequencies of AR occurrence.

We find evidence for a clear seasonal cycle in the oc-
currence of low-category ARs in all domains except the
UK, corroborating findings from other studies on Euro-
pean ARs56,57 (Fig. 5A–E). This showcases the ability of
the proposed method to identify known cycles in com-
plex observational discrete data. While we do not ana-
lyze the phases of the identified cycles, it is likely that
they align with the known enhanced frequency of AR oc-
currence in boreal autumn/winter. In the UK domain,
the (significant) seasonal cycle is still noticeable, but it
is suppressed compared to the other domains. This sug-
gests a reduced seasonal predictability of ARs along parts
of the British coast. Tested against random event series
(99.99% confidence level from 1,000 surrogates), broad
bands of frequencies stand out as significant. This hints

at a certain degree of predictability of ARs based on non-
random cyclicities that could be exploited in forecasting
approaches.
Even for high-category ARs, a broad range of signif-

icant cycles exist (Fig. 5F–J). High-category ARs only
exhibit a pronounced seasonal cycle along the Iberian
peninsula and northern Scandinavia. Considering both
low- and high-category ARs, seasonality is expressed
least between 0 and 5◦W longitude (France and UK).
For high-category ARs, spectral power at lower frequen-
cies is enhanced as compared to low-category ARs. These
multi-annual/decadal cycles could be linked to the NAO:
A negative (positive) NAO is likely linked to enhanced
AR frequency in southern (northern) Europe56.

V. CONCLUSION

In many disciplines, research focuses on the identifi-
cation of cycles in periodic discrete data (e.g., symbolic
time series). In particularly challenging cases, only a se-
quence of (non-equidistant) times is recorded. Standard
techniques, such as the Fourier PSD are not designed
to quantify the spectral content of such signals. Noise
contamination and limited signal length are additional
obstacles in the spectral analysis of such systems.
In this work, we proposed a novel power spectral esti-

mate for discrete data. It is based on the edit distance,
a powerful distance measure that quantifies the similar-
ity of two non-equidistant event sequences of unequal
lengths by means of their transformation costs. The fun-
damental idea proposed here is to, firstly, normalize the
edit distance as an auto-correlation measure of a discrete
time series and, secondly, transform this measure into
a power spectral estimate using the Fourier transform
(analogously to the Wiener-Khinchin theorem). The pro-
posed spectrum is referred to as EDSPEC. It enables
us to identify cycles in non-equidistant discrete ordered
pairs of time and values {(ti, xi)} as well as for the more
challenging case when only time stamps of the discrete
events {ti} can be assessed. Here we focus on the latter
case.
We applied the proposed EDSPEC to a range of dis-

crete paradigmatic signals, both of stochastic and deter-
ministic origin. A simple hypothesis test based on ran-
dom event surrogates is provided to test for the presence
of significant cycles. The EDSPEC proves effective in
identifying known cycles and broad bands of significant
frequencies, also in presence of relatively high noise in-
tensity (or timing jitter). Even for a very low number of
events, the EDSPEC performs comparably well.
In a challenging real-world application, we used the

EDSPEC to investigate potential cycles in a novel cat-
alogue of European ARs. With the increasing moisture
capacity of a warming atmosphere, ARs are expected to
become a more and more vital source of atmospheric wa-
ter supply, including heavy rainfall events. While sea-
sonality in European ARs is undisputed and has been
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inferred from other AR catalogues (e.g., based on com-
posites), our study confirms the presence of a seasonal
cycle in AR occurrence based on our more suitable spec-
tral analysis framework. This warrants further credibility
to (spatially heterogeneous) seasonality in the landfall of
European ARs. Furthermore, the proposed framework
allows to separately study the presence of seasonality as
well as multi-annual cycles for different AR categories.
We found that hazardous high-category ARs show less
seasonal regularity but offer predictability based on a
broad range of significant cycles, potentially linked to
the phase of the NAO.

In future studies, additional features of the proposed
EDSPEC should be studied, e.g., spectral scaling and
leakage effects. A multitude of complex discrete signals
from real-world systems calls for application of the pro-
posed measure, potentially revealing unknown periodici-
ties.
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DATA AND CODE AVAILABILITY

Code used for the creation of event series and ED-
SPEC calculation of the paradigmatic examples, as well
as code for the EDSPEC calculation of the ARs is avail-
able at Zenodo 10.5281/zenodo.7555049. AR events
are extracted from the ARtracks Atmospheric River Cat-
alogue available at Zenodo https://doi.org/10.5281/
zenodo.7018725.

Appendix A: Spectral analysis of AR catalogue

We filter the AR tracks as returned by ARtracks with
respect to several criteria in order to ensure the obtained
European ARs are physically meaningful with respect to
our research objective. Firstly, the information on which
proportion of the AR is located over Europe is used to en-
sure that only ARs are considered that are located over
Europe for most track instances (Fig. A1A). This still
preserves ARs that overall have mixed continental con-
tributions, e.g., over Africa. Next, an AR is fully dis-
carded if (a) it exhibits IVT less than 250 kg/ms for any
instance along its track, (b) does not persist longer than
6 h, (c) terminates over the ocean, (d) is solely conti-
nental. We further only consider AR tracks that can be
identified with a continuous track, i.e., no time 6-hourly
instance is missing. Track instances where an AR is fully
located over a different continent than Europe are dis-
carded (while not discarding the full track). Finally, we

categorize ARs adhering to the scale proposed in57. If
an AR exceeds the scale, either in terms of persistence
of strength, we assign the most suitable category at the
respective edge of the scale (e.g., an AR with maximum
IVT magnitude between 750 and 1000 kg/ms and per-
sistence of more than 72 h is still ranked as category 4).
Categories are computed exclusively from all instances
of a track where the AR landfalls, i.e., some fraction of
its area is located over Europe. For the strength-based
classification of ARs, we choose an AR’s category based
on which category would be correct for its strength along
most instances of its track. The resulting spatial distri-
bution of ARs (based on the final instances of their cen-
troids) is strongly oriented along the European west coast
(Fig. A1). There are various hot spots of landfalling ARs
along the European west coast, such as the Iberian Penin-
sula, the UK, and Scandinavia. In the Atlantic, Green-
land as well as some islands attract landfalling ARs. On
the other hand, we also identify landfalling ARs along
the Mediterranean coast of Italy. For by far the most

FIG. A1. Spatial distribution of European landfalling ARs.
Frequencies are estimated using a spatial histogram of AR
landfall coordinates with 60 longitudinal and 40 latitudinal
bins.
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ARs that are studied here, the final landfall location is
mostly covering the European continent (Fig. A2, gray
bars). Only in few AR tracks terminate predominately
over Africa, Asia, or North America (but still exhibit a
European contribution). Most European ARs are poten-
tially beneficial as they are assigned to category 1 or 2
(Fig. A2, colored bars).

FIG. A2. Continental contributions of European landfalling
ARs (gray bars) and respective distribution of AR categories
(colored bars). The displayed frequencies refer to the catego-
rized ARtracks catalogue of ARs without spatial or temporal
integration. The second y-axis gives average numbers of dis-
tinct landfalling ARs per year (not to be mistaken with the
yearly time at least one AR is active).

FIG. A3. Distribution of AR events in the different five spa-
tial domains. Gray bars indicate the total number of AR
events, regardless of their category, within each domain. The
second y-axis shows the density of these events, i.e. fraction
of months that exhibit an AR event. Frequencies of different
AR categories are shown by colored bars.

A more detailed assessment of the robustness of the
obtained spatial distribution and statistics of AR prop-
erties beyond the findings mentioned here is investigated
in a study that is currently prepared.
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