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IntroductionForest fires cause extreme long-term damage to the environment,flora, fauna, and property including forestry and agricultural holdingsevery year [1],[2].

This research aims to shed light on how remote sensing data canhelp in detecting forest fires in tropical climate. In this situation, the useof entinel data makes it possible to make assessments related to land Sand forest fires for proper forestry governance.

Remote sensing analysis revealed by the formulas F1_BT_in,F2_BT_in, cloud mask [3], and land surface temperature (LST),demonstrated better combined values for forest fire detection accuracy.

Finding of this work, together with the forest fires detection showed that there were extensive land fires in several differentareas. 

Sentinel-3 SL_1_RBT data was accessed throughhttps://scihub.copernicus.eu/ then visualized through SNAP tools and Q-GIS software.

The research utilizes remote sensing data as references toachieve its objectives, for instance, land and forest firesusing Radiances and Brightness Temperature (RBT). 

Forest fires is considered as one of serious disasters [4], and itsfrequency in tropical countries, especially Rupat-Bengkalis Island,Riau Province, Indonesia. The province has experienced growingpressure from an expanding palm oil industry and industrial timberplantation.
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The active fires weredetected in warm brightareas where the burnedareas are warm butalready burned, so thetemperature wouldgenerally be lower thanat the edges where the fire is still active (F1_BT_in).
The brightnesstemperature is higherin the centre and thepixels are eliminatedby the condition thatis set up for the removalof the warm background(F2_BT_in).
The brightnesstemperature is higherin the centre and thepixels are eliminatedby the condition thatis set up for the removalof the warm background(F2_BT_in).

The images show a cloud mask calculated,which is marked withdarker values whenthere is no cloud.
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We found that the LST wasincreased by fires event compared with the surrounding area, respectively. As detected point datafor all fire events, each fire isassociated with the value of LST in the same location of the fire event. (I) (j)
Land Surface Temperature

Remote sensing visualises the fire events, the megafires of 2019, where the forest and the land burned.
The forest fires sensed in Rupat occurred between oil palmplantations and industrial forestproduction (HTI), both in .peatlands Data resources are such an essential dimension in generatingcollaborative governance to adapt and mitigate forest fires.
Mapping the most vulnerableregion to fires in Indonesia.

Collaborative governance for forest fire adaptation using remotelysensed data.Monitoring the most vulnerableregion to fires in Indonesia.
Burned land, especially its status andownership, can be assessed furtherby national and local governments.
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This automated mapping not only detects fires but also areas that have been burned (most likely for new plantation areas).
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Detection of forest firesthat are clearly visible by running a data algorithm to ensure that the fire point is not covered by cloud. (h)(g)
Detection of Forest Fires

In the mega-fires of 2014, 2015, and , about 1.17 million hectares2019of forest and land were burned each year.

The study concludesthat remotely senseddata provides updatedinformation of intensitiesof forest fires withSentinel-3 analysisshowed the importanceof environmental condition, where thevariable and approachshould be developed for monitoringframework on forest fires.

Hence, detecting firesrequires an accurateand suitable approachfor monitoring burnedland to strengtheningplanning strategies byremotely sensed data.
The approach is also efficientfor government institution tocreate an operational monito-ring in forest governance. Further, the technique can alsobe relied upon for mappingvulnerable forest fires useful for developing mitigation planswhose objectives are todecrease forest and peatlandlosses.The effectiveness ofthis methodologyprovides an alternativeapproach for forestgovernance.

Since 2013, ,Riau Rupat Island - Bengkalis RegencyProvince Sumatra Island, Indonesia is the most vulnerable region for forest fires.
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