
Water managers need accurate rainfall forecasts for a wide spectrum
of applications, ranging from water resources evaluation and
allocation, to flood and drought predictions. In the past years, several
frameworks based on Artificial Intelligence have been developed to
improve the traditional Numerical Weather Prediction (NWP)
forecasts, thanks to their ability of learning from past data, unravelling
hidden relationships among variables and handle large amounts of
inputs. Among these approaches, Long Short-Term Memory (LSTM)
models emerged for their ability to predict sequence data, and have
been successfully used for rainfall [1] and flow forecasting [2], mainly
with short lead-times.
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Methodology
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This research aims to explore the use of different LSTM models to predict
daily precipitation for the upcoming 30 days, using both local
atmospheric and global climate data.

The area of Rijnland, the
Netherlands, is located at the end of
the Rhine delta. Recently, it has been
affected by summer droughts, which
have been occurring more frequently
in the past years. From
meteorological perspective, summer
droughts are characterised by high
evapotranspiration rates, that often
exceed the amount of rainfall. The
local water authority, i.e. Rijnland
Water Board, monitors the
cumulative precipitation deficit
(difference between precipitation
and evapotranspiration) to monitor
drought evolution and plan
mitigation interventions.

Case study 

Problem Description & Research Objective

Results

 LSTM models could not accurately predict daily precipitation, despite the lead-
time and model architecture selected. Better results are shown for predicting
one day rainfall, but peaks are not well captured, but still not satisfactory.

 The possibility of including existing precipitation forecasts in the input variables
will be explored in the future, using LSTM to post-process existing forecasts
rather than generating ne predictions.

Data analysis and preparation:
Cross-correlation analysis, 
climatology, Principal 
Component Analysis (PCA) for 
global variables

 Local water managers need reliable forecasts of daily precipitation to 
monitor precipitation deficit and forecast meteorological droughts.

 According to local end-users, currently precipitation forecasts are 
reliable up to a lead time of 15 days.

 Accurate daily precipitation forecasts with a lead time up to 30 days 
are needed to plan drought mitigation interventions.
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Fig. 1. : The study area  of Rijnland (green) 
within the Netherlands

Local atmospheric (ERA 5):
- Precipitation (P)
- Relative Humidity (RH)
- Total Cloud Cover (TCC)
- U and V Wind (UW, UV)
- Temperature (T)

Global climate (ERA 5):
- Mean Sea Level 
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Input variables selection

Performance evaluation

 Mean Absolute Error (MAE) between the N observations 
𝑦𝑦𝑖𝑖 and N predictions �𝑦𝑦𝑖𝑖 (Eq. 1)
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 Comparison against climatology.
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 For 1 day forecasting, LSTM models perform slightly better than climatology
(MAE = 2.06 mm for multivariate LSTM, MAE = 2.5 mm climatology), but do not
capture the extremes.

 For 30 days forecasting, all the LSTM models perform similarly to climatology.
MAE is overall low (<1 mm), but LSTM models predict always values around the
average daily precipitation (Fig. 2 b)

 Vanilla LSTM model performs overall better than the other LSTM models, with
better results for the multivariate cases.

Fig. 2. : a) Results of 1 day forecasts obtained with Vanilla LSTM (univariate and multivariate), plotted against 
climatology and observations b) ) Results of 30 days forecasts obtained with Vanilla LSTM (univariate and 
multivariate), plotted against climatology and observations 
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