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Abstract

Knowledge about future global and regional warming is essential for effective adaptation 
planning and our current temperature projections are based on the output of global climate
models (GCMs). GCMs can provide projections of temperature under a range of future 
emissions scenarios but despite agreeing on the direction of this signal there are still 
discrepancies in the magnitude of the projected response1.  

Here we develop a novel method2,3 for constraining uncertainty in future regional 
temperature projections based on the predictions of an observationally trained machine 
learning algorithm, Ridge-ERA5. Ridge-ERA5 - a Ridge regression model4 - learns 
coefficients to represent observed relationships between daily temperature anomalies and 
a selection of thermodynamic and dynamical variables in the ECMWF Re-Analysis (ERA) 
5 dataset5. Climate-invariance of the Ridge relationships is demonstrated in a perfect 
model framework: we train a set of 23 Ridge-CMIP model on historical data of the Coupled
Model Intercomparison Project (CMIP) phase 66 in order to emulate these models and 
then evaluate the predictions of these emulators using future scenario data from the most 
extreme future emissions pathway, SSP 5-8.5, which represents the most extreme 
extrapolation challenge for the Ridge models. 

Combining the historically constrained Ridge-ERA5 coefficients with normalised inputs 
from CMIP6 future climate change simulations forms the basis of a new methodology to 
derive observational constraints on regional climate change. For daily, regional (2.5°x2.5°),
summer (JJA) temperatures across the Northern Hemisphere, the Ridge-ERA5 
observations-based constraint implies, for example, that a group of higher sensitivity 
CMIP6 models is inconsistent with observational evidence (including in Eastern, West & 
Central, and Northern Europe), see Figure 1, potentially suggesting that the sensitivity of 
these models is indeed too high7,8. A key advantage of our new method is the ability to 
constrain regional projections at very high – daily – temporal resolution which includes 
extreme events such as heatwaves. 
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