Dependence of Early Warning Signals on Time Scale Separation

Introduction

The system under study is a two dimensional stochastic FitzHugh-Nagumo
type system with a time scale separation.

dr = (a1x — azx® + by)dt + ocdW,; = f(z,y)dt + odW, (1)
dy = e(By — z + c)dt = eg(x, y)dt (2)

The z variable is the fast dynamics and are modified with a noise term. The
y variable is the slow dynamics, with the parameter ¢ < 1 determining the
separation of time scales. In theory, this system only experiences biturcations
for infinite time scale separation (¢ — 0), but intermediary values also exhibit
rich dynamics.
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Figure (1) Nullclines of the system (1), (2). Text describes the dynamical
regimes of the system for different values of parameter 8

The x variable has a cubic nullcline with two folds at the local extrema.
The orientation of the linear nullcline (Figure 1) determines which of the three
dynamical regimes the system is in. For the bistable regime, the system admits
two stable and one unstable equilibrium points. Stochastic forcing can cause
the system to switch between the two stable states. In the excitable regime,
there is just one stable equilibrium. However, noise can cause an excursion to
the other branch, before returning to the equilibrium. Finally, the oscillatory
regime has an unstable fixed point, and the system oscillates along and between
the two stable branches, Of course, large enough noise can cause a transition in
these latter two regimes as well, by causing the trajectory to cross the unstable
manifold of the x nullcline. This study focuses on the oscillatory regime.
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Figure (2) Deterministic trajectories for different values of time scale separa-
tion €. Trajectories deviate from the critical manifold on the order of powers of
e near the fold bifurcation.

Figure 2 shows how the deterministic dynamics behave for different values

of €. Trajectories track the slow manifold, which is order £ from the stable

branches of the critical manifold f(z,y) = 0. Nearer to the bifurcation point,
there is a deviation from the critical manifold on the order of £2/2 in the fast
variable and €!/2 in the slow variable. Thus for larger values of €, the system
tips much later than the bifurcation point is reached.

is presentation participates in OSPP

EGU

Kolja Kypke! and Peter Ditlevsen?

University of Copenhagen

Outstanding Student & PhD

kolja.kypke@nbi.ku.dk

candidate Presentation contest

IPhysics of Ice, Climate and Earth, Niels Bohr Institute,

1073
1072

107"

Early Warning Signals

In stochastic time series, early warning signals (EWS) can detect critical
transitions such as bifurcations in the dynamics by measuring statistical indi-
cators such as variance and autocorrelation. As the system approaches a fold
bifurcation, the restoring rate to the equilibrium weakens as the eigenvalues of
the Jacobian approach the imaginary axis. This causes the stochastic trajec-
tory to meander, resulting in an increase in variance and autocorrelation in a
phenomenon known as critical slowing down. While there are other indicators
that can be used as EWS to detect critical transition, these two are the most
straightforward and the focus of this study.

We look the data in a sliding window approaching the critical transition.
This window must be long enough that we can recover acceptable statistics, but
not too long as to lose quasi-stationarity of the distribution of the signal in this
window. Since the variance and autocorrelation approach and asymptote at the
bifurcation, we may only look at a certain time before it.

Questions:

e do we see an increase in variance and autocorrelation that will tell us that

a transition will occur?

e can we predict when this transition will occur?
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Figure (3) Probability for noise tipping to occur before the bifurcation is
reached depending on € and o. The blue line indicates the equality o = /e,
which is a lower bound for noise tipping to be probable The red line indicates

the equality o = 4/¢|log(o)|, which is a lower bound for noise tipping to be
likely. The grey hatches show an approximate region where EWS cannot be
detected.

Figure 3 shows the probability that a noise-induced transition will occur
before the bifurcation point is reached for a given value of € and o. For larger
values of o, the probability is close to 1. We can delineate this region by two
curves: The blue curve o = /e splits the parameter space into the strong noise
(0 > 4/¢) and the weak noise (o < /¢) regimes. In the weak noise regime, the
system is very unlikely to tip before the bifurcation, and we would expect to
be able to see EWS and predict the time of tipping (see Figure 4). The red
curve shows o = y/¢|log(c)|. For values of o larger than this, the probability of
tipping before the fold is close to 1. In this regime, we can still see an increase
of variance and autocorrelation, but the system is likely to tip due to noise and
the time of tipping is unpredictable (see Figure 5).

Additionally, the grey hatches (¢ > 0.125) show an approximate region
within which EWS are not visible (see Figure 6). For € ~ 1, the system is
too far from the fold point, and does not tip. Thus in this region we do not see
EWS, even for very low noise.
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Figure (4) Sample time series and ensemble average EWS for ¢ = 0.002 and
three different noise strengths
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Figure (5) Sample time series and ensemble average EWS for ¢ = 0.01 and
o=1
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Figure (6) Sample time series and ensemble average EWS for € near 1 and
o =0.01

Conclusion

The parameter space of time scale separation € and noise strength o can be
split into three distinct regions:

1. large €: cannot predict if a transition will occur

2. small e, strong noise: can predict that a transition will occur, but not
when

3. small €, weak noise: can predict that a transition will occur and when




