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D] 1) Background @ 2) Temperature driven cave ventilation dynamics
« The contributing sources and mechanisms of delivery of subsurface CO, in karst systems are not well understood. The « Cave gas samples of 5 L were taken in
traditional model suggests that the dominant source originates from the respiration of catchment vegetation and soils’. Cali-5-bond bags from two sites, GF
(downstream) & GR (upstream), nearby
both cave entrances (Fig.2). The upstream
entrance lies at 509m.asl, and the

SAIl (Saivu spring) = Bame temp. spring
o~

GF site
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« Additional sources of vadose CO, found in recent studies .
o Exchange of air flow with the outside atmosphere. Lo i
o Degassing of ancient CO, from the carbonate host rock.
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Atmospheric gas:

o Areservoir of respired organic carbon within the epikarst 3.|  werevive *  o\/ir7er AND Forest downstream entrance lies at 402m.as| >©. N
. . . . (C3) Samples were also taken from borehole
« Along-term process study of Milandre cave (Fig.1) is taking B wells of 0.5-5m depth throughout the GR site

place aiming to trace the fluxes of carbon in the cave system " Grass field Tobacco crops o . o

. . . C3 or C4) Ma (C3)  Motorwa catchment (Fig.3) which can give insight to
and determine potential sources and spatial-temporal (C3 or C4) Maize crops (C4) y the possible production locations of CO
variations. The 8'3C and F“C of catchment CO, from the g p——E—, 2
atmosphere, wells in the catchment area, and cave atmosphere _ 1 = (Bure rhutan
was analysed. Samples were taken once every two months for J ;:r?azl zggcﬁi?érgﬁgsggg is(,:o\t/\é)eriec
over a year. Y p 5w

analyser. The F4C was determined by o {nso | |
AMS analysis with a MICADAS (Minj || "™ eieg e N'
Carbon Dating System).

* In paleoclimate studies this analysis could assist in tracing past ecosystem state and
response to climate change.
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« Keeling plots show the two end members (atmosphere and respired) during the growing / .
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processes e g COﬂtrlbUtIOﬂ Of CarbOn from degaSSIng Of Cave rlver and drl p Vonth WI nter . , _ _ - , . Fig.5: 613C and F'“C of cave CO, of both sampling sites GF (dashed lines) and GR (solid lines) over one year.
Fig.4: CO, concentration of cave gas of both sampling sites GF (dashed line) and GR (solid line) over one year. Blue bars notate winter ventilation resime. red bar notates summer ventilation resime.
Water F|g 7 & 8 Fig.9: Y-intercepts of 8'3C and F'“C over one year. Blue bars notate winter ventilation regime, red bar notates summer ventilation regime. £l 5
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