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1. Motivation – Improving Bayesian Inversion

Given a forward model f 𝜽 → 𝑫 over parameters of interest 𝜽 (e.g. source location):

𝑝 𝜽 𝑫) ∝ 𝑝 𝑫 𝜽) × 𝑝(𝜽)

• Gaussian likelihood function is often used to perform Bayesian inversions on seismic data.

• This methodology can introduce bias in the presence of non-Gaussian noise.

2. Simulation-Based Inference (SBI)
• Learned likelihood function replaces user-specified (e.g. Gaussian) likelihood function.
• This likelihood function is modelled by a Machine Learning (ML) model known as a

Neural Density Estimator (NDE), which is trained on simulated data.
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Fig. 1: Overview of a Masked Autoencoder for Density Estimation (MADE) [1], a class of NDE that has shown
great success in modeling probability densities by ensuring its output is a normalised probability distribution.
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4. Example Simulation-Based Study 

• We demonstrate SBI on a simplified problem of source-location
inversion, i.e. 𝜽 = {𝑥, 𝑦, 𝑧, Δ𝑡}, a four parameter source inversion.

• Study region of the 2021 São Jorge crisis in the Azores, using the
UPFLOW 2021-22 [4] Ocean Bottom Seismometer (OBS) array.

• Entirely synthetic study, simulating events using the isotropic 1-D model
PREM [5]. The simulations are accurate down to wave periods of 𝑇~2 s.

𝓓 = {𝜽! , 𝒕!}

3. Data Compression

• The very high dimensionality of the displacement data 𝑫, which represents full-waveforms
at each station, makes training a NDE infeasible.

• Data 𝑫 must be compressed to dim(𝜽) summary statistics 𝒕, replacing 𝑫 in Fig. 1.

This study investigates two compression methods 𝜙 for seismic data:
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5. Simulation-Based Inference Workflow

Fig 4. Events simulated with Instaseis [7]. Events are centred on the seismic swarm, sampled
within a cube 𝑥, 𝑦, 𝑧 = 3 km × 3 km × 17 km, between depths 3 − 20 km. The time shift Δ𝑡 is
sampled between −1,1 s. Synthetic noise is added to each waveform before compression.

Fig 5. NDE likelihood contours for each compression method. Score compression performs
poorly due to displacement 𝑫 non-linearity with respect to location parameters 𝜽. ML-based
compression gives sharper likelihood contours, corresponding to less lossy compression.
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Fig. 2: Left: Classical technique for optimal compression using a first-order Taylor expansion, see [2]. Right:
Neural network architecture, inspired by [3], trained to perform compression by learning to map 𝜙 ∶ 𝑫 → 𝜽.
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6. Inversion Results

𝜙: Optimal Score Compression 𝜙: ML-Based Compression
𝑝(𝑡!|𝜃!)𝑝(𝑡!|𝜃!)
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Samples from the posterior 𝑝 𝜽 𝒕%&')
are drawn using MCMC once the
likelihood NDE is trained.

7. Conclusions
• SBI can incorporate full-waveform information

and account for non-Gaussian noise effects in the
posterior distribution. Future work will address
and quantify these advantages.

• Samples are generated in the compressed space
{𝑡, 𝜃} , foregoing the forward model and giving
~60× speed-up over MCMC using Instaseis.

• The choice and tuning of the compression
technique is important.

• More work is needed to avoid failure in the
presence of modelling errors.

Compression
Score ML

Compression MSE ↓ 2.6×10%" 𝟖. 𝟐×𝟏𝟎%𝟒

Posterior CRPS* ↓ 2.6×10%" 𝟏. 𝟑×𝟏𝟎%𝟐

Calibration Error ↓ 0.35 0.31

¹Physics & Astronomy, University College London, ²Earth Sciences, University College London, 
³Mullard Space Science Laboratory, University College London, ⁴University of Geneva

Table 1. ML-based method improves
compression and yields tighter posteriors
(lower CRPS). Both methods are relatively
well calibrated.
*Continuous Ranked Probability Score
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Fig. 3: A schematic showing the experimental setup for this simulation-based study. We
use OBS stations from the UPFLOW array (red triangular markers) to study the recent
seismic swarm crisis located on São Jorge island (brown star). Bottom left: zoom in on
the São Jorge crisis, with a small selection of events from the IPMA [6] catalogue.
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Fig. 6: Sample inversion
posteriors, comparing the
two compression methods.
Each shade shows 68%
and 95% confidence
intervals. Dashed black
lines represents the true
parameters 𝜽.


