. Numerization of aurora activity

We developed an expert-system algorithm to quanifiy the auroral activity seen in the all-sky camera (ASC). doi: 10.5194/gi-12-71-2023
\rightarrow Can idenifify sudden and significant intensification of auroral arc with expanding motion "Local-Arc Breaking" on a real-iime basis.
Level 6: Local-Arc Breaking
Level 4: possible precursor
other Level are reserved for lower activity
Local-Arc Breaking is normally accompanied by large deviation of geomagnetic field ($|\mathrm{dB} / \mathrm{dtt}|>2 \mathrm{nT} / \mathrm{s}$ over more than 1 min), but exact relation between the auroral activity (Level) and geomagnetic activities (dB/dt) is unknown.
(a) Original jpeg image

Appendix: how to obtain Level
(1a) Classifiy each pixel into "strong", "green arc", "dififuse", cloud, artificial light, and moon, according to RGB values
(1b) Obtain coverage (\%) of each category \& "strong" aurora's average intensity $=L_{3}=$ aver $\left(L^{3}\right)(L=$ lightiness in HSL) in real-time.
\rightarrow This set on numbers in $A S C$ arral
\rightarrow This set of numbers is "ASC auroral index"
(2) Obtain "Level" from the ASC auroral index only.

Level 6 : arc $\geq 3 \%$, strong $\geq 0.2 \%, L_{3} \geq 8$
Level 4 a : $\operatorname{arc} \geq 2 \%$, strong $\geq 0.2 \%, L_{3} \geq 5$
Level 4 b: arc $\geq 1 \%$, strong $\geq 0.1 \%$, strong ${ }^{\star}$ L $3 \geq 1.5(\%)$

sharpest increase of L3

A. Busom Vidal $^{(1,2)}$, M. Yamauchi ${ }^{(1)}$, and U. Brändtröm ${ }^{(1)}$

(1) Swedish Institute of Space Physics (IRF), Kiruna; (2) Luleả University of Technology (LTU), Kiruna
2. Examine relation between "Level" and "dB/dt"

In the present work, we obtain the probability of reaching $|B / \mathrm{dt\mid}|>5 \mathrm{nT} / \mathrm{s}$ (Level 8) and Level 6
from lower levels (Level 5, Level 4a, Level 4b, Level 4c) withn 15 min .
(Level $8 \approx$ potential risk of geomagnetic induced current (GIC) hazard)
Level 8: |dB/dt| $\geq 5 \mathrm{nT} / \mathrm{s}$
Level 7: Level $6 \&|\mathrm{~dB} / \mathrm{dt\mid}|>2 \mathrm{nT} / \mathrm{s}$
Level 5: two of $\{\operatorname{arc} \geq 2.5 \%$, str $\geq 0.15 \%$, aver(L3) $\geq 5\}$, void $<30 \%, \mathrm{~dB} / \mathrm{dt}>0.8 \mathrm{nT}$
Level 4 c : $\{\operatorname{arc} \geq 2 \%$ OR strong $\geq 0.2 \%$ OR aver $(\mathrm{L} 3) \geq 5\}$, void $<30 \%$, dB/dt $>0.5 \mathrm{nT}$

Probability of reaching Level 6 (first time of reaching low level in entire night)
16-18 UT (MLT=UT+1.5 hr) 18-20 UT (MLT=UT+1.5 hr) 20-22 UT (MLT=UT+1.5 hr) 20-22 UT (MLT=UT+1.5 hr)

Data is limited: we used only winter 2021/2022 season (from November 2021 to April 2022)
probability of reaching $|\mathrm{dB} / \mathrm{dt}|>5 \mathrm{nT} / \mathrm{s}$ (Level 8)
Too little statistics (only 6 cases of Level 8), and only 3 cases had precursor (Level 5, Level 6, and Level 7)
correlatiobe between $\mathrm{dB} / \mathrm{dt}$ and ASC auroral index |dB/dt| vs. \%Arc: 0.54 (20-22 UT) / 0.41 (22-24 UT) |dB/dt| vs. \%Strong: 0.26 (20-22 UT) / 0.36 (22-24 UT) |dB/dt| vs. $\mathrm{L}_{3}: 0.26$ (20-22 UT) / 0.36 (22-24 UT)

very preliminary SUMMERY with limited data

1. For both Level 6 (Local-Arc Breaking), rise time is very short, within one minute from Level 4 for nearly half the case, and 10 minute is sufficient.
2. Out of four possible precursors, three precursors (Level 4a, 4b, 4c, 5) give 40-70\% probability of the Local-Arc Breaking (Level 6) within 10 minutes. Level 4 a is so far the best precursor.
3. Correlation between the aurora activity (ASC auroral index) not very high, but still exists.
4. Prediction of dB/dt > $5 \mathrm{nT} / \mathrm{s}$ (Level 8) is yet difficult, but Level 7 (Level $6+|\mathrm{dB} / \mathrm{dt}|>2 \mathrm{nT} / \mathrm{s}$) can be a possible candidate. Considering the risk of GIC hazard, 20% is still worth warning. We will examine more data in this direction (add 2022/2023 data and add 2023/2024 data).
