Uranium isotope evidence for extensive seafloor anoxia after the end-Triassic mass extinction

Anna Somlyay^{+1,2,4}, László Palcsu³, Gabriella Ilona Kiss³, Matthew O. Clarkson⁴, Emma Blanka Kovács⁵, Zsolt Vallner¹, Norbert Zajzon⁶, and József Pálfy^{1,2}

¹Eötvös Loránd University, Department of Geology, Hungary ²ELKH-MTM-ELTE Research Group for Paleontology, Budapest, Hungary 3Institute for Nuclear Research, Debrecen, Hungary ⁴ETHZ, Geological Institute, Department of Earth Sciences, Budapest, Switzerland ⁵Trinity College, Department of Geology, and Earth Surface Research Laboratory (ESRL), Dublin, Ireland 6University of Miskolc, Institute of Mineralogy and Geology, Miskolc, Hungary

*contact: anna.somlyay@erdw.ethz.ch

Introduction

- End-Triassic extinction (ETE) is one of the "Big Five" extinctions Central Atlantic Magmatic
- Province (CAMP) volcanism led to ecosystem collapse
- Proximal cause of the extinction is debated

Objectives

- Generating a new uranium isotope dataset across the Triassic-Jurassic boundary
- Earth system modelling to understand the role of anoxia in triggering the extinction and delaying the subsequent biotic recovery

δ²³⁸U system

- Paleoredox proxy measured in limestone
- δ²³⁸U is uniform in the ocean information on the global seafloor redox condition (not the local basin)
- Reconstruction of proportion of seafloor under anoxic conditions and its temporal changes

Study area

- Csővár basin, Hungary Continuous section across the Triassic-Jurassic boundary (TJB)
- Uniform lithology Well studied section (bio- and
- cyclostratigraphy)

Preservation of global δ²³⁸U signal

TIB indicating a

global δ²³⁸U signal

0 02 an ca δ²³⁸U-(%)

Fig. 3. Uranium isotope data of the Csövár section (blu and the Val Adrara-Italcementi sections (red, Jost et al. 2017).

Fig.1. Uranium isotope, mercury (Kovács et al., 2020), and carbon isotope data (Kovács et al., 2020) from the Csővár section.

Earth system modeling

Fig. 4. Modeling of anoxia as a consumer of CAMP volcanism. (A) Estimated codel forcing carbon input (red pasks), calculated removal rates due to silicate weakhering (green) and marine cogramic carbon burial fibuel, (B) Estimated 6%²C composition of carbon input, (O) Modeld 5%² Curve Diaks Voll invol (D) Estimated estort of saraBora anoxia based on the CP-U model (grey) and U-ycle box model evolution of δ^{2H} Um um sing different Δ^{2H} Umm, estimates (black lines).

- The coupled behaviour of carbon. phosphorus and uranium cycles after volcanic carbon emissions were modelled
- Constrained by astrochronological age model of the section (Vallner et al. 2023)
- Anoxia reached its maximum extent (13%) 200–250 kyr after the extinction
- The extent of seafloor anoxia remained high (1-6%) throughout the Hettangian

A major negative uranium isotope anomaly was detected immediately below the Triassic-Jurassic boundary indicating widespread anoxia

- The δ^{238} U anomaly coincides with the previously detected carbon isotope anomaly and Hg peaks, which are associated with the volcanism of the CAMP and mark the extinction horizon
- Cause and effect relationship between volcanism, anoxia and extinction
- The δ²³⁸U values remain low throughout the Hettangian
- The Hettangian is marked by further minor Hg-peaks and negative carbon isotope anomalies

Methodology

- NEPTUNE Plus[™] MC-ICP-MS instrument
- Institute for Nuclear Research (ATOMKI), Debrecen
- Good external reproducibility: modern seawater standard gave a mean δ238U value of -0.409 142 ± 0.029‰

Conclusions

- Marine anoxia was likely developed as a consequence of CAMP activity and subsequent volcanic pulses are responsible for protracted anoxia
 - Our geochemical and modelling results suggest that marine anoxia played a key role in hindering the biotic recovery after the end-Triassic extinction

References

Jost, A.B., Bachan, A., van de Schootbrugge, B., Lau, K.V., Weaver, K.L., Maher, K., Payne, J.L., 2017. Uranium isotope evidence for an expansion of marine anoxia during the end-Triassic extinction. Geochemistry, Geophysics, Geosystems, 1-16.

Kovács, E.B., Ruhl, M., Demény, A., Fórizs, I., Hegyi, I., Horváth-Kostka, Z.R., Móricz, F., Vallner, Z., Pálfy, I., Horváth-Kostka, Z.R., Móricz, F., Vallner, Z., Pálfy J., 2020. Mercury anomalies and carbon isotope excursions in the western Tethyan Csővár section support the link between CAMP volcanism and the end-Triassic extinction. Global and Planetary Change 194, 103291.

Vallner, Z., Kovács, E.B., Haas, J., Móricz, F., Ruhl, M., Zajzon, N., Pálfy, J., 2023. Preservation of orbital forcing in intraplatform: achonates and an astronomical time frame for a multiproxy record of section (CSM/k-Hungary, Planegegeography Palaeoclimatology Palaeoecology, 111492.