Reasons for the intermodel spread of simulated Arctic sea-ice sensitivities

M. Katharina Stolla^{1,2}, Hauke Schmidt², Dirk Notz¹ ¹University of Hamburg, Hamburg, Germany, ²Max Planck Institute for Meteorology, Hamburg, Germany Contact: katharina.stolla@mpimet.mpg.de

Take home messages

- The simulated intermodel spread of sea-ice sensitivity is strongly linked to the simulation of the incoming longwave radiation in the Arctic.
- If the simulation of Arctic temperature rise was more accurate, the intermodel spread of sea-ice sensitivity would strongly be reduced.
- **Clouds play a minor role for the intermodel spread of simulated** incoming longwave radiation.

run). Blue lines indicate within the transition period starts after the sea-ice are

2 Possible reasons for intermodel spread of simulated sea-ice sensitivities

Notz and Stroeve (2016) showed that $\frac{d \operatorname{SIA}}{d \operatorname{CO}_2} \propto \frac{d \operatorname{F}_{\mathrm{LW,in}}}{d \operatorname{CO}_2}$, meaning that models with a high sea-ice sensitivity also simulate a high sensitivity of incoming longwave radiation in the Arctic $F_{LW,in}$ to CO₂ emissions [1].

2a Representation of clouds only plays a minor role.

How do we test the cloud's contribution to the intermodel spread?

Besides the usual simulation of incoming longwave radiation, models also calculate the incoming longwave radiation that would be simulated if there were no clouds. This parameter is called clearsky incoming longwave radiation $F_{LW,in,clear}$ whereas the original parameter is called all-sky incoming longwave radiation $F_{LW,in,all}$. Their relation is $F_{LW,in,all} = F_{LW,in,clear} + CRE$, where CRE is the cloud radiative effect.

What do we find?

The sensitivities of the clear-sky and the allsky $F_{LW,in}$ are highly correlated. Both intermodel spreads are similarly large.

The sensitivity of $F_{LWinclear}$ is almost equally higly correlated to the sea-ice sensitivity as the sensitivity of $F_{LW,in,all}$.

Figure 2.1: **Relation between** $\frac{dF_{LW,in,dl}}{dCO_2}$ and $\frac{dF_{LW,in,clear}}{dCO_2}$. Each dot represents $\frac{dF_{LW,in,dl}}{dCO_2}$ in a particular model as a function of $\frac{dF_{LW,in,clear}}{dCO_2}$ in the same model. The yellow line represents the linear regression line. The correlation r is indicated. The crosses represent the intermodel mean of $\frac{dF_{LW,in,all}}{dCO_{2}}$ and $\frac{dF_{LW,in,clear}}{dCO_{2}}$ and the bars indicate the standard deviation.

What does that mean?

The different representation of clouds across the models does not contribute substantially to the intermodel spread of simulated Arctic sea-ice sensitivity.

References:

- [1] Notz, D., and J. Stroeve, 2016: Observed Arctic sea-ice loss directly follows anthropogenic CO₂ emission. Science, 354 (6313), 747–750, https://doi.org/10.1126/science.aag2345. https://doi.org/10.7265/efmz-2t65.
- Atmospheric and Oceanic Technology, 19 (10), https://doi.org/10.1175/1520-0426(2002)019%3C1500:DOANSM%3E2.0.CO;2.
- https://doi.org/10.1175/JCLI-D-11-00262.1.

Therefore, it is worth investigating the reasons for the intermodel spread of $\frac{d F_{LW,in}}{d CO_2}$

 $F_{LW,in}$ is mainly driven by clouds, temperature and moisture [4,5]. It can be assumed that the relative humdity is constant, thus changes in moisture are represented by temperature changes.

Figure 2.2: Relation between $\frac{dF_{LW,in,dl}}{dCO_2}$ and $\frac{dSIA}{dCO_2}$ as well as between $\frac{dF_{IW,in,clear}}{dCO_2}$ and $\frac{dSIA}{dCO_2}$. Each dot represents $\frac{dSIA}{dCO_2}$ in a particular model as a function of $\frac{dF_{LW,in,all}}{dCO_2}$ / $\frac{dF_{LW,in,clear}}{dCO_2}$ in the same model. The lines represent the linear regression lines. The correlations r are indicated.

2b Representation of temperature plays a major role.

How do we test the temperature's contribution to the intermodel spread?

The sea-ice sensitivity can be split at the impact of temperature: $\frac{d SIA}{d CO_2} = \frac{d T}{d CO_2} \cdot \frac{d SIA}{d T}$, where the global mean temperature is considered. However, we also consider the Arctic temperature (mean temperature north of 80°N) which then means that $\frac{d \operatorname{SIA}}{d\operatorname{CO}_2} = \frac{d \operatorname{T}}{d\operatorname{CO}_2} \cdot \frac{d \operatorname{Tarct}}{d\operatorname{T}} \cdot \frac{d \operatorname{SIA}}{d\operatorname{Tarct}}$. The Arctic amplification is represented by $\frac{d \operatorname{Tarct}}{d\operatorname{T}}$. In the following, we investigate how well $\frac{d \operatorname{SIA}}{d\operatorname{T}}$ and $\frac{d \operatorname{SIA}}{d\operatorname{T}}$ are simulated.

What do we find?

The relative error between the observed and the simulated sea-ice sensitivities to warming reduces strongly when only the Arctic is considered.

If the Arctic warming is simulated correctly, the response of sea ice is represented fairly well and only contributes little to the intermodel spread of the overall sea-ice sensitivity.

When considering the sensitivity to global warming, the Arctic amplification is incorporated in the sensitivity. Therefore, we can conclude that the representation of the Arcitc amplification stronly contributes to the intermodel spread.

What does that mean?

The different representation of the Arctic temperature evolution and the Arctic amplification in particular are primarily responsible for the intermodel spread of simulated Arctic sea-ice sensitivity.

[2] Walsh, J. E., W. L. Chapman, F. Fetterer, and J. S. Stewart, 2019: Gridded Monthly Sea Ice Extent and Concentration, 1850 Onward, Version 2. National Snow and Ice Data Center, https://doi.org/10.7265/jj4s-tq79. [3] Meier, W. N., F. Fetterer, A. K. Windnagel, and J. S. Stewart, 2021: NOAA/NSIDC Climate Data Record of Passive Microwave Sea Ice Concentration, Version 4. National Snow and Ice Data Center,

[4] Lee, H.-T., and R. G. Ellingson, 2002: Development of a Nonlinear Statistical Method for Estimating the Downward Longwave Radiation at the Surface from Satellite Observations. Journal of

Stephens, G. L., M. Wild, P. W. Stackhouse, T. L'Ecuyer, S. Kato, and D. S. Henderson, 2012: The Global Character of the Flux of Downward Longwave Radiation. Journal of Climate, 25 (7), 2329 – 2340,

In the following, we investigate the impact of the representation of clouds and temperature on the $\frac{d F_{LW,in}}{d CO_2}$ and intermodel spread of therefore also $\frac{d \text{SIA}}{d \text{SIA}}$

Figure 2.3: The sea-ice sensitivity to warming as simulated in CMIP6 and observed. The blue lines indicate the simulated values and the red lines represent the observations with satellites. The red shaded areas indicate the observational uncertainties. The dark blue lines indicate the mean sea-ice sensitivities to warming across all CMIP6 models. The upper lines represent the sensitivity to Arctic warming and the lower lines represent the sensitivity to global warming.

MAX-PLANCK-INSTITUT / FÜR METEOROLOGIE