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* Evaluation of interference patterns in GNSS signal-
to-noise ratio (SNR) observations allows estimation
of Significant Wave Height (SWH) see e.g. [1,2]

* Refinement of method [1] evaluated here

e Qutline of [1]: Prediction of SWH with supervised
Machine Learning (ML) using engineered features
derived from SNR interference patterns with

I. kernel regression and clustering techniques
ii. analysis of attenuation of oscillating pattern [2]

Models used: Linear Regression (LinReg), Artificial
Neural Network (ANN), Bagged Regression Tree
(BaggedRT)

* Objective of refinements:

|.  Optimized extraction of information for SWH
prediction from numerous redundant
engineered features for use with LinReg

=) Reduce model complexity
=) Maintain predictive performance

Il. Refined use of engineered features:
Apply grid search to Random Forest (RF)

=) advancement over usage of BaggedRT

Sensors and Data Sets

Raw data acquisition for supervised ML as in [1]:
* |nput data for feature engineering:

— 1 Hz GNSS SNR observations of GPS L5 with
JAVAD TRE 3 DELTA receiver and LEIAR25.R3
or LEIAR25.R4 antenna from FINO2 (Fig.1)

— |GS precise orbits [3]

— Meteorological data for elevation angle
correction [4] from FINO?2

° Ground truth values of SWH from radar sensor
(1 minute sampling) from FINO 2

Figure 1: Research station FINO2 in
the Baltic Sea. The GNSS antenna
used for the acquisition of SNR
observation data is mounted on the
platform in the lower part of the
station. Photo: Federal Agency for
Cartography and Geodesy

Arrangement of data sets for supervised ML asin [1]

data set periods used cases

training January 2021 - May 2021 4914

testing November 2020, August 2021, September 2021 3402
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Feature Engineering [1]

1. i. Reflectometric analysis with kernel regression and clustering
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Figure 2: Interference pattern in scattered data
evaluated with a kernel regression with appropriate
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bandwidth (blue). Taken from [1].

ii. Reflectometric analysis with inverse modelling [2] yields damping coefficient 0,, for reference time ty

2. Feature engineering: Use reflectometric analyses with ¢, in moving time window MTW (t;T,,)

of length 27, centered attime ¢
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Figure 3: Flow of reflectometric analysis of
scattered data. € denotes the elevation
angle of the signal-emitting satellite.

Adapted from [1].
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Figure 5: Testing RMSE of SWH predictions with LinReg for increasing
number of features taken from the original setting (a or b) [1], the
reordered setting from FSS and the principal components (PCA features),
respectively. Additionally depicted testing RMSEs: Results of RF optimized
with grid search and BaggedRT [1] (both for the full original feature

coefficient for linear combination
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Figure 6: Visualization of the part of the PCA
transformation matrix that is associated with the
first 9 principal components (PCA features).

Top: for setting a. Bottom: for setting b.
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* Apply either forward selection scheme (FSS) similar to [5] or Principal Component Analysis (PCA) [6] to
engineered features (setting a, b).

a) FSS used in model training,
see Fig. 4: rearrangement
of features according to
their importance

Figure 4: Depiction of FSS. Importance of a

Select additional
feature with largest
absolute value of cor-
relation to residuals

b) Application of PCA:

Particular orthogonal transformation of vector of normalized features yields vector of principal

components (,,PCA features”)

Transformation (calculated with feature vectors from training data) diagonalizes correlation matrix

* Leading features from PCA and FSS respectively used for SWH prediction

Grid search for SWH prediction with Random Forest and original engineered features

All combinations of following choices for hyperparameters evaluated in supervised ML

Number of trees: 500, 1500, 2500, 3500, 5000, 1000
Minimal number of samples in node allowing it to be split: 10, 20, 30, 40,50, 100

Minimal number of samples in node allowing it to be considered as leaf : 10, 20, 30, 40,50, 100
Maximal depth of trees: 4, 5,6, 7, 8,9, 10
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Figure 7: Observed SWH plotted against predicted SWH for refined predictions with LinReg and RF for the testing data. For the
predictions with LinReg, only a limited number of leading features from FSS and PCA respectively was used, which suffices to

reach the minimum testing RMSE (see Fig. 5).

Concluding remarks

* With FSS/PCA, information from original engineered features is condensed into a few features that
suffice to reach original accuracy of SWH prediction with LinReg

* New engineered features from setting a [1] contribute to enhanced SWH prediction with LinReg

* SWH prediction with RF shows improvement over BaggedRT and approaches accuracy of LinReg
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Wir geben Orientierung.

SWH radar sensor data by the FINO initiative (Research Platforms in the North and Baltic Seas), which was organized by the Federal Ministry for Economic Affairs and Climate Action (BMWK) on the
basis of a resolution of the German Bundestag, by Project Management Jilich (PTJ) and coordinated by the German Federal Maritime and Hydrographic Agency (BSH).
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