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3. Finally, as a result of catchment characteristics there is spatio-temporal variability in the propagation of meteorological to hydrological drought.

Z
O The spatiality of drought events is complex in Britain, as is the propagation of rainfall to flows within catchments (Barker et al. 2016; Tanguy et al. 2021). Distinctive dif-  The East Atlantic Pattern (EA) has also been acknowledged to have an impact on climate (West et al. 2021; 2022b) and has been referred to as a southward shifted NAO-
5 ferences in both rainfall and flow regimes have been found between the north-western and south-eastern regions which are related to a range of climatological and like pattern. Studies have noted that the phase and magnitude of the EA also influences rainfall spatial distribution and volume across Europe, and consequently by us-
> hydrological variables. Spatial patterns in the propagation of drought is further complicated as it is influenced by both climate and catchment characteristics (Van Loon inga combination of the NAO and EA we may be able to describe climate variability more accurately (Moore et al. 2013; Comas-Bru &§ McDermott, 2014).
8 & Laaha 2015). Droughts are inherently driven by climatic processes, and for Britain and most of NW Europe, the North Atlantic Oscillation (NAO) atmospheric-oceanic  The aboue highlights the complex interplay between climate and hydrological systems, which manifests in spatiotemporal variability in rainfall, flow responses, and
E circulation has long been identified as the leading mode of climate variability (Hurrell et al. 2003) affecting rainfall across Britain (West et al. 2019). The NAO is defined subsequent drought characteristics and propagation, generally along a N/S or NW/SE gradient in Britain. This study aims to bring together understandings of the influ-
Zz 0y two meridional diploes—theIcelandic Low and Azores High/Anticyclone. When the sea level pressure difference between these two locations is greater than average  ence of the NAO and EA on rainfall distribution and magnitude, and the variable nature of meteorological to hydrological drought (rainfall-streamflow) propagation.
= the NAO is said to be in a positive phase (NAO+), whilst a weaker than average SLP difference represents a negative phase (NAO-).
-
To assess the general relationship between the NAO/EA and rainfall and streamflow, correlation analysis was A standard generalised linear regression model would assume that the NAO or EA have an A frequency analysis quantifying the relationship between the phase of the two teleconnections and low
undertaken for 291 catchments across GB. Rainfall is represented by the Standardised Precipitation Index (SPI) equal influence on both wet and dry conditions (high/low rainfall and flows). The use of a SPI-1 and SSI-1 values was undertaken. We also calculated the frequency of mild (O > index < -1), moder-
and flow by the Standardised Streamflow Index (SSI) - both with a one month accumulation period (Tanguy et quantile regression model allows for an assessment of the relationship between each telecon- ate (-1 > index < -1.5) and severe (index < -1.5) drought under different combinations of NAO and EA phas-
al. 2017; Barker et al. 2018). nection index and low SPI-1/5SI1 values at different quantile levels. We performed quantile re- es., the monthly teleconnection index values were classified. Months with teleconnection index values >
gression using 99 quantiles between the NAO and EA indices and the catchment SPI-1 and SSI 0.25 were classified as positive phases, whilst months with index values.
To develop a more detailed understanding of the combined effect of the NAO and EA on meteorological —Lua.lqesf V:/ezeg;rca)lctecithﬁ quanttllj :eg;ess;ondgoegflccllents f:)r Spl_:/ 5511 quantiles below O.2
drought, and how rainfall deficits propagate through to hydrological drought, nine case study catchments (Amini et al., ) which equated to standardised index values <-1. This analysis shows:
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to ensure a spatially representative sample across Great Britain. The catchments were chosen as they vary 5 g tions. Southern catchments more variably have drought associated with EA- conditions.
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g 2. Secondly, in the summer months, less distinctive spatial differences were found, with higher probability of drought conditions under NAO+ phases, which however can be enhanced or moderated by the EA. woea=  [Nosen  MNA0sEA  [woren Mmoo Mworen  Wwoeas  Ewoes  Ewoe
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Our findings suggest that by considering the NAO and EA in combination, we can better describe climate and drought variability in both the winter and summer months.
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