

Mechanical and Microstructural Characterization of Spatially Heterogeneous Groningen-type Simulated Fault Gouges

Job Arts¹ (j.p.b.arts@uu.nl), André Niemeijer¹, Martyn Drury¹, Ernst Willingshofer¹, Liviu Matenco¹ ¹Utrecht University

1. Introduction

Gas production from the Groningen gas field causes compaction and induced seismicity on complex normal fault systems that cut lithologies of contrasting frictional properties (sandstones vs claystones; Fig. 1b & c). Little is known about the effects of along-fault heterogeneity on the mechanical strength and stability of faults. Such knowledge is required to model induced fault rupture and to quantitatively assess seismic hazards.

Aims of this study:

Quantifying the effects of along-fault heterogeneity on the frictional behaviour of faults in the Groningen gas field.

5. Take home messages

- The evolution in friction coefficient of segmented gouges is characterized by:
- A phase of displacement-weakening attributed to clay-smear development.
- Subsequent displacement-strengthening caused by lithology mixing and quartz incorporation into the clay-smear
- Frictional stability of segmented gouges is initially dominated by the Slochteren sandstone gouge segments, displaying velocity weakening behaviour.
- With increasing displacement, clay-smear development causes a shift towards more stable behaviour. • Transients in pore fluid pressure are enhanced by along-fault heterogeneity in porosity and permeability.

overview of the incremental evolution of the segmented gouge sample.

Figure 8: (a) Gouge distribution of segmented sample after ~180 degrees Figure 9: SEM-BSE images of segmented gouge (r290) after ~145 mm of mean shear-displacement. (a) Section at of rotation. Locations of micrographs (Fig. 9) are indicated. (b) Schematic interface between SL gouge and TB gouge . (b-e) Images at higher magnification showing microstructures related to the principal slip zone (PSZ). (f) Section within the SL domain showing a high abundance of quartz grains within the clay smear. (g) Locally, quartz grains within the PSZ are in contact and continuous Y-shears are absent.