

Improved data-driven ecosystem carbon fluxes under moisture stress through synergistic **Earth observations?**

A: the problem

Atmospheric water demand and soil moisture supply shape the carbon (C) balance of many terrestrial ecosystems, but their reactions are complex and diversified, and model estimates of C fluxes suffer from low accuracy under moisture limitation.

relatively lower average evaporative fraction (EF, top). NEE in a semi-arid shrubland (US-Whs, bottom) based on a simulation from FLUXCOM-X.

D: main insights

→ inconsistent accuracy change from either of the new EO predictors, worse spatial patterns

Fig.2: $\Delta R2$ upon inclusion of additional EO predictor variables (experiment – baseline) across sites for a range of temporal scales, for weekly fluxes along a gradient in weekly evaporative fraction (EF), and weekly ΔNEE along weekly ΔEF .

* sophia.walther@bgc-jena.mpg.de

⁵ Joint Research Centre of the European Commission, Ispra, Italy

Sophia Walther^{1,*}, Wouter Dorigo², Gregory Duveiller¹, Sofia L. Ermida³, Fabian Gans¹, Marren Ghent⁴, Basil Kraft¹, Mirco Migliavacca⁵, Jacob A. Nelson¹, Wolfgang Preimesberger², Karen L. Veal⁴, Ulrich Weber¹, Ruxandra-Maria Zotta², Martin Jung¹

B: idea & questions

simulations with direct Earth observations (EO) of both moisture availability and ecosystem reactions to it

1) How relevant are the additional EO predictors SIF, ku-**VOD** and soil moisture (SM) for the flux accuracy? 2) How strongly do the additional EO predictors influence the model output?

 \rightarrow moderate influence of additional EO predictors on noon NEE, water-related importance changes in VPD, incoming light, LST, SIF

Fig.3: Predictor importance for noontime NEE during wet (EF≥0.65) and dry weeks (EF≤0.25). The aggregation across groups across predictors (top left): meansamples(abs(meanpredictors(SHAPvalues))). The detailed pie charts show mean_{samples}(abs(SHAPvalues)).

<u>C: approach</u>

1) hourly net ecosystem exchange (NEE) at ~140 eddycovariance sites estimated in FLUXCOM-X. Quantify accuracy of i) a baseline predictor set (meteorology, surface reflectance, EVI, NIRv, NDWI, LST) ii) the baseline plus SIF, VOD, SM iii) baseline* using coarsened MODIS predictors 0.25°

time fluxes

 \rightarrow water effect encoded in light, VPD & NIRv, no physically interpretable importance of new EO predictors regarding water effects

Fig.4: Predictor importance of selected variables for noon time NEE in dependence on the value of the predictor and water availability during the given week.

2) predictor importance from SHAP values for noon-

E: conclusions & further steps

- Representation of water effects terrestrial carbon flux on estimates remains a scientific challenge.
- unclear whether data quality of additional EO predictors is limiting their comple-Or mentary information content to the baseline is too low
- analysis of the role of site heterogeneity
- other ML-methods and predictors

MAX PLANCK INSTITUTE

FOR BIOGEOCHEMISTR

