MVSE Mission Phase A/O Study: A Proposal for Understanding the Dynamics of Induced Magnetospheres

Nadim Maraqten, Institute of Space Systems, University of Stuttgart, Stuttgart, Germany (st160859@stud.uni-stuttgart.de)

Viktoria Kutnohorsky, Institute for Astrophysics and Geophysics, University of Graz, Graz, Austria (viktoria.kutnohorsky@edu.uni-graz.at) and the MVSE Mission Team: Albers, Roland; Andrews, Henrik; Baskevich, Claire; Boccacci, Gabriele; Covella, Francesca; Cressa, Luca; Garrido Moreno, Juan; Gillmayr, Jana; Huber, Kilian; Krämer, Eva; Laddha, Sunny; Lennerstrand, Sofia; Lundén, Ville; Manzini, Davide; Matias, João; Maurer, Manuel; Oggionni, Filippo; Pires, Vasco D. C.; Schulz, Leonard; Sinjan, Jonas; Suarez, Crisel; Terraza Palanca, Inés; Teubenbacher, Daniel; Viviano, Mirko

1 INTRODUCTION

- Multi-spacecraft mission concept to study Venusian m
- Concurrent engineering by 32 international students with engineering and science backgrounds; advice from experts of ESA and academia
 - Summer School Alpbach 2022: Scientific definition and baseline design
 - Post Alpbach Summer School Event 2022 using COMET tool: Refinement of design, proof of feasibility (incl. ESA margins), consistency check with COMET
- L-Class Mission

2 SCIENCE CASE

- >> How does the sun drive the dynamics of an induced magnetosphere?
- Mission Objective 1: Observe the reactions of an induced magnetosphere (MS) to the variations of the solar wind (SW) conditions
 - Measure: change of magnetosphere structure
 - Measure: variation of heating process
- Mission Objective 2: Observe the reactions of an induced magnetosphere to solar eruptive events such as interplanetary Coronal Mass Ejections (ICMEs), Corotating Interaction Region (CIR), and Solar Flares

3 SCIENTIFIC MEASUREMENT AND INSTRUMENT REQUIREMENTS

- > SR 1: measurements of 3D magnetic fields \rightarrow electromagnetic waves
- > SR 2: measurement of \geq 2 electric field components \rightarrow plasma oscillations
- \gg SR 3: measurements of ion and electron distributions \rightarrow density, velocity and temperature
- \gg SR 4: measurements of ion composition \rightarrow common pickup ions from Venusian atmosphere
- SR 5: science spacecraft in: i) dayside and ii) downstream the bow shock and iii) magnetotail
- >> SR 6: SR5 for sufficient duration to measure reactions to solar wind and changes in magnetotail
- > SR 7: observation of >10 CME events \rightarrow 2 years science + 1 year trajectory

4 WHY VENUS? purely induced magnetosphere accessibility similarity to Earth				
	5 TRAJECTOR	XY		
	Manoeuvre	ΔV / m/s		
1	Deep Space	30		
	Manoeuvre			
2	Venus Orbit	640		
	Insertion			
3	Pericythe Raise	181		
1	Circularisation	1155		
-	Phasing	11		
	End of Life	11		
	Total	2028		

6 TRANSFER STAGE

- >> Functions: Orbital delivery of scientific spacecraft Data transmission to Earth
- Design Drivers: Propellant volume allocation
- Cubic shape: 2 x 2 x 2.2 m³ Peak power: 1103 W (incl. 20% margin)

7 SCIENCE SPACECRAFT (3x)

- > Functions: Collection of scientific measurements, data transmission to transfer stage
- Design Drivers: Solar array surface, radiator panel size, electronics accomodation
- >> Characteristics: Octagonal shape: height 0.7 m; diameter 2 m, Peak power: 491 W (incl. 20% margin)

	Mass Budget			
Science	spacecraft	Transfe		
Mass / kg				
29.14	Attitude and	Orbit Contro		
28.56	Commu	nicatons		
60.72	Instru	ments		
36.91	Mecha	anisms		
83.11	Ροι	ver		
	Propu	ulsion		
104.49	Struc	cture		
11.63	The	rmal		
17.73	Harı	ness		
74.46	System Ma	rgins (20%)		
1.37	Fuel, Oxidize	er, Propellant		
448.1	Total W	et Mass		

ACKNOWLEGEMENTS

The authors would like to express their sincere gratitude to all lecturers, tutors, and organisers of Summer School Alpbach 2022 for their support and feedback during the development of this mission. The same goes for the tutors and organisers of the Post Alpbach Summer School Event 2022, who offered a unique opportunity for improvement of the mission.

Instruments	Variable
Fluxgate magnetometer (x2)	\vec{B}
Search coil magnetometer (x1)	$\delta \vec{B}$
Spin-plane double probe (x4)	\vec{E}
Electrostatic analyzer (x2)	VDF
Mass analyzer (x1)	m/q
High energy particle instrument (x1)	E

8 CONCLUSIONS

r	stage
	Mass / kg
I	67.09
	45.01
	13.24
	102.42
	156.99
	352.10
	26.38
	38.16
	160.28
	1924.02
	2885.70

MVSE mission sheds light on how the
sun drives the dynamics of the induced
Venusian magnetosphere

- L-Class Mission; 4230 kg launch mass
- Feasibility proven (incl. ESA margins); consistency checked with COMET tool; no technical showstoppers
- Three spin-stabilised scientific spacecraft in resonant orbits; simultaneous measurements i) up and ii) downstream
- the bow shock, iii) in the magnetotail
- >> Transfer stage performs orbital delivery and communication to Earth

